
Convolution in Neural
Networks

Kate Farrahi

Vision, Learning and Control
University of Southampton

References: https://github.com/vdumoulin/conv_arithmetic
Justin Johnson, Bernhard Kainz, Jon Hare

https://github.com/vdumoulin/conv_arithmetic

Motivation

• So far, we have
focused on MLPs

• How is a 2D image
input into an MLP?

• How can we keep
the spatial
information?

Components of a Convolutional
Neural Network (CNN)

• Convolution Layers

• Activation Functions

• Pooling Layers

• Normalization

• Fully Connected Layers

The Convolution Operation

In the time domain, convolution is:

Notice that the image or kernel is
“flipped” in time, where f is the image
and g is the kernel.

Image taken from: Wikipedia

Image taken from: Wikipedia

Cross-Correlation in
Practice

Convolution over a two-dimensional input image I and
two-dimensional kernel K is defined as:

(1)

However, nearly all machine learning and deep
learning libraries use the simplified cross-
correlation function

(2)

<latexit sha1_base64="J/qepbgAfueApXZi5r0FDl2olTw=">AAACLHicbZDNSgMxFIUz9b/+VV26CRZhKm2ZEVE3gujG0k1Fq4W2lEyaatokMyQZsQzzQG58FUFcWMStz2HajqCtBwIf597LzT1ewKjSjjOwUjOzc/MLi0vp5ZXVtfXMxuaN8kOJSRX7zJc1DynCqCBVTTUjtUASxD1Gbr3e+bB++0Ckor641v2ANDm6E7RDMdLGamXOr2ya7+bgCbRLsME9/zHai2E59+M2VMhbEY8TEDEs2bTA87BbEDlYtnle5FqZrFN0RoLT4CaQBYkqrcxro+3jkBOhMUNK1V0n0M0ISU0xI3G6ESoSINxDd6RuUCBOVDMaHRvDXeO0YceX5gkNR+7viQhxpfrcM50c6Xs1WRua/9Xqoe4cNyMqglATgceLOiGD2ofD5GCbSoI16xtAWFLzV4jvkURYm3zTJgR38uRpuNkvuofFg8uD7OlZEsci2AY7wAYuOAKn4AJUQBVg8ARewDsYWM/Wm/VhfY5bU1YyswX+yPr6BlrWo3Q=</latexit>

S(i, j) = (I*K)(i, j) =
X

m

X

n

I(i�m, j � n)K(m,n)

<latexit sha1_base64="Z00GTqk2E8FifTe73JCLB3AZb+g=">AAACLHicbZDLSgMxFIYz9Vbrrdqlm1ARpraUGRF1IxQFUdxUtCq0pWTStMYmmSHJiGWY5/AZ3PgIvoIgLhTRnT6H6UXw9kPg4z/ncHJ+L2BUacd5thIjo2PjE8nJ1NT0zOxcen7hRPmhxKSCfebLMw8pwqggFU01I2eBJIh7jJx6nZ1e/fSSSEV9cay7Aalz1Ba0RTHSxmqkd45sWrjIwS1o78Ma9/yraCWGB7kvt6ZC3oh4PAQRw32b5nkBXuRFDh7YvCByjfSSU3T6gn/BHcJSafc6c5d9fys30g+1po9DToTGDClVdZ1A1yMkNcWMxKlaqEiAcAe1SdWgQJyoetQ/NobLxmnCli/NExr23e8TEeJKdblnOjnS5+p3rWf+V6uGurVZj6gIQk0EHixqhQxqH/aSg00qCdasawBhSc1fIT5HEmFt8k2ZENzfJ/+Fk9Wiu15cOzRpbIOBkmARZIENXLABSmAPlEEFYHAD7sETeLZurUfrxXodtCas4UwG/JD18Ql1uKc/</latexit>

S(i, j) = (I*K)(i, j) =
X

m

X

n

I(i+m, j + n)K(m,n)

Convolution Visualised

Visual link https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/
no_padding_no_strides.gif

“Convolution” in Neural
Networks

• “Convolution” in the neural network literature almost
always refers to an operation akin cross-correlation

• An element-wise multiplication of learned weights
across a receptive field, which is repeated at various
positions across the input.

• Normally, we also add an additional bias term; a single
bias term for each kernel.

• There are also other parameters of these “convolutions”…

Convolutional Layers
• In a convolutional layer, we have multiple kernels or

filters which are learnt (plus the biases). This set of
kernels can be called a bank of kernels.

• Each filter produces a single “Response Map” or
“Feature Map” or "Activation Map". The activation maps
are stacked together as “channels” of the resultant
output tensor

• Each activation map tells us how much does each
position in the input respond to the corresponding
convolutional filter

Convolution as a Matrix
Multiplication

• The convolution operation can be expressed as a
matrix multiplication if either the kernel or the signal is
manipulated into a form known as a Toeplitz matrix:

• For 2D convolution one would use a “doubly block
circulant matrix”

y = h * x =

h1 0 … 0 0
h2 h1 … ⋮ ⋮
h3 h2 … 0 0
⋮ h3 … h1 0

hm−1 ⋮ … h2 h1

hm hm−1 ⋮ ⋮ h2

0 hm … hm−2 ⋮
0 0 … hm−1 hm−2

⋮ ⋮ ⋮ hm hm−1

0 0 0 … hm

x1
x2
x3
⋮
xn

2D Convolutions with kernel
size of 1

• 1x1 convolutions are a common place operation,
but might seem non-sensical at first

• They do not capture any local spatial information

• They are used to change the number of feature
maps without affecting the spatial resolution

Padding
• What happens to a convolution at the edges of its

spatial extent?

• In spatial convolution if we do nothing, the output will
be smaller…

• We often use zero-padding to retain the size

• With "same" padding, P = (K-1) / 2 to make the output
the same size as the input

• Output: W - K +1 + 2P (K = kernel size, W = input size)

No padding

Arbitrary padding

“same” padding

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/
arbitrary_padding_no_strides.gif

Striding
• Convolution is expensive… could we make it

cheaper by skipping over positions?

Stride=(2,2)

Striding
• Convolution is expensive… could we make it

cheaper by skipping over positions?

Stride=(2,2)

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_strides.gif

Fractional Striding/
Transpose Convolution

• What if we consider fractional strides between 0
and 1?

• Intuitively, if bigger strides subsample, then
fractional strides should upsample

• This is equivalent to “expanding” the input by
padding and performing convolution

• And potentially also striding by adding zeros
around all the values

Pooling
• Striding is a popular way to reduce spatial

dimensionality in modern networks

• Before striding was devised, pooling, was the defacto
way of reducing dimensionality

• Pooling reduces the number of parameters to learn and
the amount of computation performed in the network

• The pooling layer summarises the features present in a
region of the feature map

Max Pooling, 2x2, stride=2

Note: The default stride for 2D max pooling in PyTorch is the kernel size

Max Pooling Gradients

• The gradient of the max pooling operation is 1
everywhere a max value was selected, and zero
elsewhere

• This means that implementations not only need to
record the max values in the forward-pass, but also
keep track of the positions of those maximums for
the backward pass

Average Pooling

Local Versus Global Pooling
• The pooling operations on the previous slides are local

• They result in a feature map reducing in spatial size

• Global pooling reduces a feature map to a scalar

• So a tensor of many feature maps would be reduced
to a single feature vector

• Often used near the end of networks to flatten
feature maps into feature vectors that can be fed
into an MLP

Global Max-Pooling

Dilated Convolutions
• Sometimes we want to have larger receptive fields in

our networks

• We can increase the kernel size to achieve this, but
this introduces more weights

• We can downsample/pool the input, but this
decreases spatial resolution

• Or we could ‘pad’ the kernel with zeros throughout to
increase the effective size without increasing the
number of parameters

Dilated Convolutions

Image taken from https://link.springer.com/article/10.1007/s10618-021-00765-5/figures/1

Data Types
• Convolutions are applied to many dimensionalities

and types of data - for example:

Single Channel Multichannel

1-D Audio Multiple sensor data over
time

2-D Audio data preprocessed into a
spectrogram; greyscale images

Colour image data (e.g.
RGB)

3-D Volumetric data, e.g. CT scans Colour video data

