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Motivation

• So far, we have 
focused on MLPs


• How is a 2D image 
input into an MLP?


• How can we keep 
the spatial 
information?



Components of a Convolutional 
Neural Network (CNN)

• Convolution Layers 

• Activation Functions


• Pooling Layers 

• Normalization 

• Fully Connected Layers



The Convolution Operation

In the time domain, convolution is: 

Notice that the image or kernel is 
“flipped” in time, where f is the image 
and g is the kernel.

Image taken from: Wikipedia



Image taken from: Wikipedia



Cross-Correlation in 
Practice

Convolution over a two-dimensional input image I and 
two-dimensional kernel K is defined as: 

(1)  

However, nearly all machine learning and deep 
learning libraries use the simplified cross-
correlation function 

(2) 
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Convolution Visualised

Visual link https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/
no_padding_no_strides.gif



“Convolution” in Neural 
Networks

• “Convolution” in the neural network literature almost 
always refers to an operation akin cross-correlation 

• An element-wise multiplication of learned weights 
across a receptive field, which is repeated at various 
positions across the input. 

• Normally, we also add an additional bias term; a single 
bias term for each kernel. 

• There are also other parameters of these “convolutions”…



Convolutional Layers
• In a convolutional layer, we have multiple kernels or 

filters which are learnt (plus the biases). This set of 
kernels can be called a bank of kernels. 

• Each filter produces a single “Response Map” or 
“Feature Map” or "Activation Map". The activation maps 
are stacked together as “channels” of the resultant 
output tensor 

• Each activation map tells us how much does each 
position in the input respond to the corresponding 
convolutional filter











Convolution as a Matrix 
Multiplication

• The convolution operation can be expressed as a 
matrix multiplication if either the kernel or the signal is 
manipulated into a form known as a Toeplitz matrix: 

• For 2D convolution one would use a “doubly block 
circulant matrix”

y = h * x =

h1 0 … 0 0
h2 h1 … ⋮ ⋮
h3 h2 … 0 0
⋮ h3 … h1 0

hm−1 ⋮ … h2 h1

hm hm−1 ⋮ ⋮ h2

0 hm … hm−2 ⋮
0 0 … hm−1 hm−2

⋮ ⋮ ⋮ hm hm−1

0 0 0 … hm

x1
x2
x3
⋮
xn



2D Convolutions with kernel 
size of 1

• 1x1 convolutions are a common place operation, 
but might seem non-sensical at first  

• They do not capture any local spatial information 

• They are used to change the number of feature 
maps without affecting the spatial resolution



Padding
• What happens to a convolution at the edges of its 

spatial extent? 

• In spatial convolution if we do nothing, the output will 
be smaller… 

• We often use zero-padding to retain the size 

• With "same" padding, P = (K-1) / 2 to make the output 
the same size as the input 

• Output: W - K +1 + 2P (K = kernel size, W = input size)



No padding

Arbitrary padding

“same” padding

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/
arbitrary_padding_no_strides.gif







Striding
• Convolution is expensive… could we make it 

cheaper by skipping over positions?

Stride=(2,2)



Striding
• Convolution is expensive… could we make it 

cheaper by skipping over positions?

Stride=(2,2)

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_strides.gif



Fractional Striding/
Transpose Convolution

• What if we consider fractional strides between 0 
and 1?  

• Intuitively, if bigger strides subsample, then 
fractional strides should upsample 

• This is equivalent to “expanding” the input by 
padding and performing convolution 

• And potentially also striding by adding zeros 
around all the values



Pooling
• Striding is a popular way to reduce spatial 

dimensionality in modern networks 

• Before striding was devised, pooling, was the defacto 
way of reducing dimensionality 

• Pooling reduces the number of parameters to learn and 
the amount of computation performed in the network  

• The pooling layer summarises the features present in a 
region of the feature map



Max Pooling, 2x2, stride=2

Note: The default stride for 2D max pooling in PyTorch is the kernel size



Max Pooling Gradients

• The gradient of the max pooling operation is 1 
everywhere a max value was selected, and zero 
elsewhere 

• This means that implementations not only need to 
record the max values in the forward-pass, but also 
keep track of the positions of those maximums for 
the backward pass



Average Pooling



Local Versus Global Pooling
• The pooling operations on the previous slides are local 

• They result in a feature map reducing in spatial size 

• Global pooling reduces a feature map to a scalar 

• So a tensor of many feature maps would be reduced 
to a single feature vector 

• Often used near the end of networks to flatten 
feature maps into feature vectors that can be fed 
into an MLP



Global Max-Pooling















Dilated Convolutions
• Sometimes we want to have larger receptive fields in 

our networks 

• We can increase the kernel size to achieve this, but 
this introduces more weights 

• We can downsample/pool the input, but this 
decreases spatial resolution  

• Or we could ‘pad’ the kernel with zeros throughout to 
increase the effective size without increasing the 
number of parameters



Dilated Convolutions

Image taken from https://link.springer.com/article/10.1007/s10618-021-00765-5/figures/1



Data Types
• Convolutions are applied to many dimensionalities 

and types of data - for example:

Single Channel Multichannel

1-D Audio Multiple sensor data over 
time

2-D Audio data preprocessed into a 
spectrogram; greyscale images

Colour image data (e.g. 
RGB)

3-D Volumetric data, e.g. CT scans Colour video data


