
Embeddings
Jonathon Hare

Vision, Learning and Control
University of Southampton

Introduction

• Sparse versus dense representations; similarity;
context

• Dimensionality reduction

• Word Embeddings

• Joint Embeddings

Problem statement
• Consider training a neural network on text

• We need a vector representation of words

• Obvious approach is One Hot Encoding into vectors
of the same dimensionality as the vocabulary size

• But, …

• Very big vectors (>171k words in English vocab)

• No notion of synonymy; all terms orthogonal

Problem statement

• We’d really like much lower dimensional vectors
(far fewer weights)

• … this is a dimensionality reduction problem

• Ideally vectors should capture similarity (cat->kitten
should be closer than cat->dog)

• … we need to learn similarity

Dimensionality Reduction

• Learned dimensionality reduction can be easily
achieved through a linear projection (potentially
followed by a non-linearity)

• e.g. a fully-connected layer

Learning Similarity:
Distributional semantics

• Distributional Hypothesis:

• words that are close in meaning will occur in
similar pieces of text

• Exploit this to uncover hidden meaning

• Latent Semantic Analysis

• Word Embeddings

Concept Spaces/Semantic
Spaces

CAT

KITTEN

KITTEN

CAT

Concept 1

Concept 2

FELINE FELINE

Latent Semantic Analysis

• Consider a term-document matrix which
described occurrences of terms in documents

• Clearly going to be sparse

• Could be weighted (c.f. TF-IDF)

Latent Semantic Analysis
• LSA works by making a low-rank approximation under

the following assumptions:

• The original term-document matrix is noisy

• anecdotal instances of terms are to be eliminated.

• the approximated matrix is de-noised

• The original term-document matrix is overly sparse
relative to the "true" term-document matrix

• We want to capture synonymy

Truncated Singular Value Decomposition

Truncated SVD considers only the largest r singular
values (and corresponding left & right vectors)

≈M
m⨉n

m⨉r

r⨉r

r⨉nUr 𝚺r VrT

Latent Semantic Analysis

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

Each column corresponds to an eigenvector of MMT

(i.e. proportional to covariance or correlation of the terms)
These are the “concepts”

Latent Semantic Analysis

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

Each row corresponds to an eigenvector of MTM

(i.e. proportional to covariance or correlation of the documents)
These are the “concepts”

Latent Semantic Analysis

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

Each row corresponds to an r dimensional vector that
describes a term as a vector of weights with respect to the

r concepts

Latent Semantic Analysis

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

Each column corresponds to an r dimensional vector that
describes a term as a vector of weights with respect to the

r concepts

Important Note

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

The term-concepts and the document-concepts are not
the same - they have the same dimensionality, but

represent different spaces
They are intrinsically linked though, and it is possible to

project one into the other

What exactly is a concept?

≈M

te
rm

s

Ur 𝚺r VrT
docs docs

te
rm

s

A linear combination of terms (or documents).
Not necessarily “comprehensible” -
e.g. 1.3452 * car - 0.2828 * bottle

Word Embeddings
• Can we build a better vector representation of

words?

• Lower dimensionality (but dense)

• Capturing synonymous words

• What about capturing algebraic semantics?

• word2vec(“Brother”) - word2vec(“Man”) +
word2vec(“Woman”) = word2vec(“Sister”)

Word Embeddings…
• Many models of mapping words to vectors have been proposed.

• A pair of commonly used models is known as “word2vec” and was introduced
by Mikolov et al. at Google

• They’re both shallow two-layer neural nets, but trained on lots of data

• Ironically, although the paper introducing the models has 9700 citations, it
was never officially published after being rejected (and heavily slated by the
reviewers) of ICLR 2013!

• Another popular model is GloVe “Global Vectors for Word Representation” by
Pennington et al.

• All these models have all the features from the previous slides!

• Note that practically speaking, you don’t have to train the models - you can just
download a pretrained variant

Images from https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec limitations

• word2vec works well, but doesn’t deal with out of
vocabulary (OOV) words

• A newer model called FastText attempts to solve
this problem by building the embeddings from
character n-grams

• The idea is that words with similar meaning
often have similar sub-strings (e.g. locat[e/ing/
ion])

Implementation Note
• In PyTorch, we don’t ever represent a word in one-hot

form

• Too expensive & unnecessary

• Rather, the Embedding Layer, is implemented as a
lookup-table between the input word index and the
corresponding output vector

• Can still be differentiated though of course as it’s
functionally equivalent to multiplication of the layer
weights by an OHE vector

Mining semantic
correspondences across

feature domains

Embedding across languages

KITTEN

CAT

Concept 1

Concept 2

CAT

KITTEN

FELINE

FELINO

FELINO

GATO

GATITO

GATO

GATITO

FELINE

Cross-Language LSI
• Use a bilingual (or multilingual) training corpus to build a

single term-document matrix

• each document vector contains terms from the original
language and its translation(s)

CAT KITTEN FELINE FELINO GATO GATITO …

doc1 1 0 0 0 1 0 …

doc2 1 1 1 1 1 1 …

…

Cross-Language LSI
• Decompose with SVD as per standard LSI

• Perform queries by projecting into the lower dimensional
space as before

• but just use one language and set the rest to 0

• Obviously this still has a problem in the sense that all
the indexed documents needed translation…

CAT KITTEN FELINE FELINO GATO GATITO …
query 1 0 0 0 0 0 …

Sequence-Sequence Translation

https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10

Image-Concept Embedding
• Basic idea: Create a large multidimensional space in which

images, keywords (or other metadata) and visual information can
be placed.

• In the training stage learn how keywords are related to visual terms
and images.

• Place related visual terms, images and keywords close-together
within the space.

• In the projection stage unannotated images can be placed in the
space based upon the visual terms they contain.

• The placement should be such that they lie near keywords that
describe them.

Searching by Keyword

SUN

Ranked Search Results:

Search for images
about “SUN”

SUN

TRAIN

Searching by Image
Search for images
like this:

Ranked Search Results:

Suggesting Keywords

Suggested keywords:

Suggest keywords
for this image: SUN

SKY

MOUNTAIN
TREE

CAR

SKY MOUNTAIN TREE SUN CAR

CAR
SUN

TREE

SKY

MOUNTAIN

Image captioning

Probabilistic Semantic Embedding

https://openreview.net/pdf?id=r1xwqjRcY7

