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Introduction

• Sparse versus dense representations; similarity; 
context 

• Dimensionality reduction 

• Word Embeddings 

• Joint Embeddings



Problem statement
• Consider training a neural network on text 

• We need a vector representation of words 

• Obvious approach is One Hot Encoding into vectors 
of the same dimensionality as the vocabulary size 

• But, … 

• Very big vectors (>171k words in English vocab) 

• No notion of synonymy; all terms orthogonal 

Problem statement

• We’d really like much lower dimensional vectors 
(far fewer weights) 

• … this is a dimensionality reduction problem 

• Ideally vectors should capture similarity (cat->kitten 
should be closer than cat->dog) 

• … we need to learn similarity



Dimensionality Reduction

• Learned dimensionality reduction can be easily 
achieved through a linear projection (potentially 
followed by a non-linearity) 

• e.g. a fully-connected layer

Learning Similarity: 
Distributional semantics

• Distributional Hypothesis: 

• words that are close in meaning will occur in 
similar pieces of text

• Exploit this to uncover hidden meaning 

• Latent Semantic Analysis 

• Word Embeddings
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Latent Semantic Analysis

• Consider a term-document matrix which 
described occurrences of terms in documents 

• Clearly going to be sparse 

• Could be weighted (c.f. TF-IDF)



Latent Semantic Analysis
• LSA works by making a low-rank approximation under 

the following assumptions: 

• The original term-document matrix is noisy 

• anecdotal instances of terms are to be eliminated.  

• the approximated matrix is de-noised 

• The original term-document matrix is overly sparse 
relative to the "true" term-document matrix  

• We want to capture synonymy

Truncated Singular Value Decomposition

Truncated SVD considers only the largest r singular 
values (and corresponding left & right vectors)
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Latent Semantic Analysis
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Each column corresponds to an eigenvector of MMT 

(i.e. proportional to covariance or correlation of the terms) 
These are the “concepts”
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Each row corresponds to an eigenvector of MTM 

(i.e. proportional to covariance or correlation of the documents) 
These are the “concepts”



Latent Semantic Analysis
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Each row corresponds to an r dimensional vector that 
describes a term as a vector of weights with respect to the 

r concepts 

Latent Semantic Analysis
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Important Note
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The term-concepts and the document-concepts are not 
the same - they have the same dimensionality, but 

represent different spaces  
They are intrinsically linked though, and it is possible to 

project one into the other

What exactly is a concept?
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A linear combination of terms (or documents). 
Not necessarily “comprehensible” -  
e.g. 1.3452 * car - 0.2828 * bottle



Word Embeddings
• Can we build a better vector representation of 

words? 

• Lower dimensionality (but dense) 

• Capturing synonymous words 

• What about capturing algebraic semantics? 

• word2vec(“Brother”) - word2vec(“Man”) + 
word2vec(“Woman”) = word2vec(“Sister”)

Word Embeddings…
• Many models of mapping words to vectors have been proposed.  

• A pair of commonly used models is known as “word2vec” and was introduced 
by Mikolov et al. at Google 

• They’re both shallow two-layer neural nets, but trained on lots of data 

• Ironically, although the paper introducing the models has 9700 citations, it 
was never officially published after being rejected (and heavily slated by the 
reviewers) of ICLR 2013! 

• Another popular model is GloVe “Global Vectors for Word Representation” by 
Pennington et al. 

• All these models have all the features from the previous slides! 

• Note that practically speaking, you don’t have to train the models - you can just 
download a pretrained variant 



Images from https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec limitations

• word2vec works well, but doesn’t deal with out of 
vocabulary (OOV) words 

• A newer model called FastText attempts to solve 
this problem by building the embeddings from 
character n-grams 

• The idea is that words with similar meaning 
often have similar sub-strings (e.g. locat[e/ing/
ion])



Implementation Note
• In PyTorch, we don’t ever represent a word in one-hot 

form  

• Too expensive & unnecessary 

• Rather, the Embedding Layer, is implemented as a 
lookup-table between the input word index and the 
corresponding output vector 

• Can still be differentiated though of course as it’s 
functionally equivalent to multiplication of the layer 
weights by an OHE vector

Mining semantic 
correspondences across 

feature domains



Embedding across languages 
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Cross-Language LSI
• Use a bilingual (or multilingual) training corpus to build a 

single term-document matrix 

• each document vector contains terms from the original 
language and its translation(s)

CAT KITTEN FELINE FELINO GATO GATITO …

doc1 1 0 0 0 1 0 …

doc2 1 1 1 1 1 1 …

…



Cross-Language LSI
• Decompose with SVD as per standard LSI 

• Perform queries by projecting into the lower dimensional 
space as before 

• but just use one language and set the rest to 0 

• Obviously this still has a problem in the sense that all 
the indexed documents needed translation…

CAT KITTEN FELINE FELINO GATO GATITO …
query 1 0 0 0 0 0 …

Sequence-Sequence Translation

https://link.springer.com/chapter/10.1007/978-3-319-73531-3_10



Image-Concept Embedding
• Basic idea: Create a large multidimensional space in which 

images, keywords (or other metadata) and visual information can 
be placed.  

• In the training stage learn how keywords are related to visual terms 
and images. 

• Place related visual terms, images and keywords close-together 
within the space. 

• In the projection stage unannotated images can be placed in the 
space based upon the visual terms they contain.  

• The placement should be such that they lie near keywords that 
describe them.



Searching by Keyword
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Searching by Image
Search for images 
like this: 

Ranked Search Results:



Suggesting Keywords

Suggested keywords:

Suggest keywords 
for this image: SUN
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Image captioning



Probabilistic Semantic Embedding

https://openreview.net/pdf?id=r1xwqjRcY7


