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Improving gradient flow with skip connections
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No Free Lunch

Statistical learning theory claims that a machine can generalise well
from a finite training set.

This contradicts basic inductive reasoning which says to derive a rule
describing every member of a set one must have information about
every member.

Machine learning avoids this problem by learning probabilistic1 rules
which are probably correct about most members of the set they
concern.

But, no free lunch theorem states that every possible classification
machine has the same error when averaged over all possible
data-generating distributions.

No machine learning algorithm is universally better than any
other!
Fortunately, in the real world, data is generated by a small subset of
generating distributions...

1or perhaps more generally rules which are not certain
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The Universal Approximation Theorem

Let ψ : R→ R be a nonconstant, bounded, and continuous function. Let
Im denote the m-dimensional unit hypercube [0, 1]m. The space of
real-valued continuous functions on Im is denoted by C (Im). Then, given
any ε > 0 and any function f ∈ C (Im), there exist an integer N, real
constants vi , bi ∈ R and real vectors wi ∈ Rm for i = 1, . . . ,N, such that
we may define:

F (x) =
∑N

i=1 viψ(wT
i x + bi ) as an approximate realization of the function

f ; that is,

|F (x)− f (x)| < ε ∀ x ∈ Im.

=⇒ simple neural networks can represent a wide variety of interesting
functions when given appropriate parameters. 2

2Visual Proof: http://neuralnetworksanddeeplearning.com/chap4.html
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So a single hidden layer network can approximate most
functions?

Yes!

But, ...

to get the precision you require (small ε), you might need a really large
number of hidden units (very large N).
worse-case analysis shows it might be exponential (possibly one hidden
unit for every input configuration)
We’ve not said anything about learnability...

The optimiser might not find a good solution3.
The training algorithm might just choose the wrong solution as a result
of overfitting.
There is no known universal procedure for examining a set of examples
and choosing a function that will generalise to points out of the
training set.

3note that it has been shown that the gradients of the function are approximated by the
network to an arbitrary precision
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Then Why Go Deep?

There are functions you can compute with a deep neural network that
shallow networks require exponentially more hidden units to compute.

The following function is more efficient to implement using a deep
neural network: y = x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xn

We should care about the data generating distribution (c.f. NFL).

Real-world data has significant structure; often believed to be
generated by (relatively) simple low-dimensional latent processes.
Implies a prior belief that the underlying factors of variation in data can
be explained by a hierarchical composition of increasingly simple latent
factors

Alternatively, one could just consider that a deep architecture just
expresses that the function we wish to learn is a program made of
multiple steps where each step makes use of the previous steps
outputs.

Empirically, deeper networks just seem to generalise better!
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What are the problems?

Learnability is still hard

Problems of gradient flow
Horrible symmetries in the loss landscape
Overfitting
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Vanishing and Exploding Gradients

The vanishing and exploding gradient problem is a difficulty found in
training NN with gradient-based learning methods and
backpropagation.

In training, the gradient may become vanishingly small (or large),
effectively preventing the weight from changing its value (or exploding
in value).

This leads to the neural network not being able to train.

This issue affects many-layered networks (feed-forward), as well as
recurrent networks.

In principle, optimisers that rescale the gradients of each weight
should be able to deal with this issue (as long as numeric precision
doesn’t become problematic).
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Issues with Going Deep

Jw4w3w2w1

b1 b2 b3 b4
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Residual Connections

One of the most effective ways to resolve diminishing gradients is
with residual neural networks (ResNets)4.

ResNets are artificial neural networks that use skip connections to
jump over layers.

The vanishing gradient problem is mitigated in ResNets by reusing
activations from a previous layer.

Is this the full story though? Skip connections also break symmetries,
which could be much more important...

4K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

.

K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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Residual Connections
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Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error
of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.
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Figure 7. Standard deviations (std) of layer responses on CIFAR-
10. The responses are the outputs of each 3⇥3 layer, after BN and
before nonlinearity. Top: the layers are shown in their original
order. Bottom: the responses are ranked in descending order.

networks such as FitNet [35] and Highway [42] (Table 6),
yet is among the state-of-the-art results (6.43%, Table 6).

Analysis of Layer Responses. Fig. 7 shows the standard
deviations (std) of the layer responses. The responses are
the outputs of each 3⇥3 layer, after BN and before other
nonlinearity (ReLU/addition). For ResNets, this analy-
sis reveals the response strength of the residual functions.
Fig. 7 shows that ResNets have generally smaller responses
than their plain counterparts. These results support our ba-
sic motivation (Sec.3.1) that the residual functions might
be generally closer to zero than the non-residual functions.
We also notice that the deeper ResNet has smaller magni-
tudes of responses, as evidenced by the comparisons among
ResNet-20, 56, and 110 in Fig. 7. When there are more
layers, an individual layer of ResNets tends to modify the
signal less.

Exploring Over 1000 layers. We explore an aggressively
deep model of over 1000 layers. We set n = 200 that
leads to a 1202-layer network, which is trained as described
above. Our method shows no optimization difficulty, and
this 103-layer network is able to achieve training error
<0.1% (Fig. 6, right). Its test error is still fairly good
(7.93%, Table 6).

But there are still open problems on such aggressively
deep models. The testing result of this 1202-layer network
is worse than that of our 110-layer network, although both

training data 07+12 07++12
test data VOC 07 test VOC 12 test
VGG-16 73.2 70.4

ResNet-101 76.4 73.8

Table 7. Object detection mAP (%) on the PASCAL VOC
2007/2012 test sets using baseline Faster R-CNN. See also Ta-
ble 10 and 11 for better results.

metric mAP@.5 mAP@[.5, .95]
VGG-16 41.5 21.2

ResNet-101 48.4 27.2

Table 8. Object detection mAP (%) on the COCO validation set
using baseline Faster R-CNN. See also Table 9 for better results.

have similar training error. We argue that this is because of
overfitting. The 1202-layer network may be unnecessarily
large (19.4M) for this small dataset. Strong regularization
such as maxout [10] or dropout [14] is applied to obtain the
best results ([10, 25, 24, 35]) on this dataset. In this paper,
we use no maxout/dropout and just simply impose regular-
ization via deep and thin architectures by design, without
distracting from the focus on the difficulties of optimiza-
tion. But combining with stronger regularization may im-
prove results, which we will study in the future.

4.3. Object Detection on PASCAL and MS COCO

Our method has good generalization performance on
other recognition tasks. Table 7 and 8 show the object de-
tection baseline results on PASCAL VOC 2007 and 2012
[5] and COCO [26]. We adopt Faster R-CNN [32] as the de-
tection method. Here we are interested in the improvements
of replacing VGG-16 [41] with ResNet-101. The detection
implementation (see appendix) of using both models is the
same, so the gains can only be attributed to better networks.
Most remarkably, on the challenging COCO dataset we ob-
tain a 6.0% increase in COCO’s standard metric (mAP@[.5,
.95]), which is a 28% relative improvement. This gain is
solely due to the learned representations.

Based on deep residual nets, we won the 1st places in
several tracks in ILSVRC & COCO 2015 competitions: Im-
ageNet detection, ImageNet localization, COCO detection,
and COCO segmentation. The details are in the appendix.
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Overfitting

Neural networks with a large number of parameters (and hidden
layers) are powerful, however, overfitting is a serious problem in such
systems.

Just as you’ve seen in simple machines (e.g. Ridge Regression and
LASSO), regularisation can help mitigate overfitting

In deep networks, we might:

Use the architecture to regularise (e.g. ConvNets)
Use weight regularisers (L1, L2 [weight decay], etc, ...)
Use a stochastic weight regulariser (like dropout)
Regularise by smoothing the optimisation landscape (e.g. Batch
Normalisation)
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Dropout

Dropout is a form of regularisation

The key idea in dropout is to randomly drop neurons, including all of
the connections, from the neural network during training.

Motivation: the best way to regularise a fixed size model is to average
predictions over all possible parameter settings, weighting each setting
by the posterior probability given the training data.

Clearly this isn’t actually tractable - dropout is an approximation of
this idea.
The idea of averaging predictions to resolve the bias-variance dilemma
is called ensembling.
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Dropout

Image from: https://www.researchgate.net/figure/
Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911
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How Does Dropout Work?

In the learning phase, we set a dropout probability for each layer in
the network.

For each batch we then randomly decide whether or not a given
neuron in a given layer is removed.

Inverse Dropout scales the activations with their probability to
maintain the overall magnitude of the response when dropout is
disabled at evaluation/test time.
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How is Inverted Dropout implemented?

We define a random binary mask m(l) which is used to remove
neurons and is generated by sampling a Bernoulli distribution with
P(x = 1) = p, and note, m(l) changes for each iteration of the
backpropagation algorithm.

The forward pass of a Dropout layer (function) during training is
given by f (x) = x �m/p.

The forward pass of a Dropout layer (function) during inference is
given by f (x) = x .

This can be applied to any layer(s) of the network except the output
layer!

It’s not common to put it everywhere; just a couple of select places
(empirically chosen).

The gradient (during training) is simply the hadamard product of the
incoming gradient with m/p.
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Why Does Dropout Work?

Neurons cannot co-adapt to other units (they cannot assume that all
of the other units will be present).

By breaking co-adaptation, each unit will ultimately find more general
features.

By ensembling (averaging) multiple networks, each relying on
different (but overlapping) features we get a more effective machine.
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