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@ No free lunch and universal approximation
e Why go deep?

@ Problems of going deep
@ Some fixes:

e Improving gradient flow with skip connections
e Regularising with Dropout
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No Free Lunch

@ Statistical learning theory claims that a machine can generalise well
from a finite training set.

@ This contradicts basic inductive reasoning which says to derive a rule
describing every member of a set one must have information about
every member.

@ Machine learning avoids this problem by learning probabilistic! rules
which are probably correct about most members of the set they
concern.

@ But, no free lunch theorem states that every possible classification
machine has the same error when averaged over all possible
data-generating distributions.

e No machine learning algorithm is universally better than any
other!

e Fortunately, in the real world, data is generated by a small subset of
generating distributions...

or perhaps more generally rules which are not certain
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The Universal Approximation Theorem

Let ) : R — R be a nonconstant, bounded, and continuous function. Let
I, denote the m-dimensional unit hypercube [0, 1]™. The space of
real-valued continuous functions on I, is denoted by C(/,,). Then, given
any € > 0 and any function f € C(/,), there exist an integer N, real
constants v;, b; € R and real vectors w; € R™ for i = 1,..., N, such that
we may define:

F(x)=SN L vito(w, x + b;) as an approximate realization of the function

1=

f ; that is,
|F(x) — f(x)| <eVx € lnp.

—> simple neural networks can represent a wide variety of interesting
functions when given appropriate parameters. 2

*Visual Proof: http://neuralnetworksanddeeplearning.com /chap4.html
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So a single hidden layer network can approximate most
functions?

@ Yes!

e But, ...

e to get the precision you require (small €), you might need a really large
number of hidden units (very large N).

e worse-case analysis shows it might be exponential (possibly one hidden
unit for every input configuration)

e We've not said anything about learnability...

e The optimiser might not find a good solution®.

@ The training algorithm might just choose the wrong solution as a result
of overfitting.

@ There is no known universal procedure for examining a set of examples
and choosing a function that will generalise to points out of the
training set.

3note that it has been shown that the gradients of the function are approximated by the
network to an arbitrary precision
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Then Why Go Deep?

@ There are functions you can compute with a deep neural network that
shallow networks require exponentially more hidden units to compute.

e The following function is more efficient to implement using a deep
neural network: y =x1 ®xo B x3D - -+ B X,

@ We should care about the data generating distribution (c.f. NFL).

e Real-world data has significant structure; often believed to be
generated by (relatively) simple low-dimensional latent processes.

e Implies a prior belief that the underlying factors of variation in data can
be explained by a hierarchical composition of increasingly simple latent
factors

@ Alternatively, one could just consider that a deep architecture just
expresses that the function we wish to learn is a program made of
multiple steps where each step makes use of the previous steps
outputs.

@ Empirically, deeper networks just seem to generalise better!
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What are the problems?

@ Learnability is still hard

e Problems of gradient flow
e Horrible symmetries in the loss landscape
e Overfitting
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Vanishing and Exploding Gradients

@ The vanishing and exploding gradient problem is a difficulty found in
training NN with gradient-based learning methods and
backpropagation.

@ In training, the gradient may become vanishingly small (or large),
effectively preventing the weight from changing its value (or exploding
in value).

@ This leads to the neural network not being able to train.

@ This issue affects many-layered networks (feed-forward), as well as
recurrent networks.

@ In principle, optimisers that rescale the gradients of each weight
should be able to deal with this issue (as long as numeric precision
doesn’t become problematic).
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Issues with Going Deep
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Residual Connections

@ One of the most effective ways to resolve diminishing gradients is
with residual neural networks (ResNets)*.

@ ResNets are artificial neural networks that use skip connections to
jump over layers.

@ The vanishing gradient problem is mitigated in ResNets by reusing
activations from a previous layer.

@ Is this the full story though? Skip connections also break symmetries,
which could be much more important...

“K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections
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Figure 2. Residual learning: a building block.

K. He, X. Zhang, S. Ren and J. Sun, " Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

K. He, X. Zhang, S. Ren and J. Sun, " Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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Residual Connections
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Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error
of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

K. He, X. Zhang, S. Ren and J. Sun, " Deep Residual Learning for Image Recognition,”
CVPR, Las Vegas, NV, 2016, pp. 770-778.
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@ Neural networks with a large number of parameters (and hidden
layers) are powerful, however, overfitting is a serious problem in such
systems.

@ Just as you've seen in simple machines (e.g. Ridge Regression and
LASSO), regularisation can help mitigate overfitting

@ In deep networks, we might:

o Use the architecture to regularise (e.g. ConvNets)

o Use weight regularisers (L1, L2 [weight decay], etc, ...)

o Use a stochastic weight regulariser (like dropout)

e Regularise by smoothing the optimisation landscape (e.g. Batch
Normalisation)
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@ Dropout is a form of regularisation

@ The key idea in dropout is to randomly drop neurons, including all of
the connections, from the neural network during training.
@ Motivation: the best way to regularise a fixed size model is to average

predictions over all possible parameter settings, weighting each setting
by the posterior probability given the training data.

e Clearly this isn't actually tractable - dropout is an approximation of
this idea.

e The idea of averaging predictions to resolve the bias-variance dilemma
is called ensembling.
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(a) Standard Neural Network

Image from: https://www.researchgate.net/figure/

Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911
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How Does Dropout Work?

@ In the learning phase, we set a dropout probability for each layer in

the network.

@ For each batch we then randomly decide whether or not a given
neuron in a given layer is removed.

@ Inverse Dropout scales the activations with their probability to
maintain the overall magnitude of the response when dropout is
disabled at evaluation/test time.
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(b) Network after Dropout
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https://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911
https://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911

How is Inverted Dropout implemented?

o We define a random binary mask m") which is used to remove
neurons and is generated by sampling a Bernoulli distribution with
P(x = 1) = p, and note, m(/) changes for each iteration of the
backpropagation algorithm.

@ The forward pass of a Dropout layer (function) during training is
given by f(x) = x © m/p.

@ The forward pass of a Dropout layer (function) during inference is
given by f(x) = x.

@ This can be applied to any layer(s) of the network except the output
layer!

@ It's not common to put it everywhere; just a couple of select places
(empirically chosen).

@ The gradient (during training) is simply the hadamard product of the
incoming gradient with m/p.
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Why Does Dropout Work?

@ Neurons cannot co-adapt to other units (they cannot assume that all
of the other units will be present).

@ By breaking co-adaptation, each unit will ultimately find more general
features.

@ By ensembling (averaging) multiple networks, each relying on
different (but overlapping) features we get a more effective machine.
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