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Introduction

What is generative modelling and why do we do it?

Differentiable Generator Networks

Variational Autoencoders

Generative Adversarial Networks
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Generative Modelling and Differentiable Generator
Networks
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Recap: Generative Models

Learn models of the data: p(x)

Learn conditional models of the data: p(x|y = y)

Some generative models allow the probability distributions to be
evaluated explicitly

i.e. compute the probability of a piece of data x : p(x = x)

Some generative models allow the probability distributions to be
sampled

i.e. draw a sample x based on the distribution: x ∼ p(x)

Some generative models can do both of the above
e.g. a Gaussian Mixture Model is an explicit model of the data using k
Gaussians

The likelihood of data x is the weighted sum of the likelihood from
each of the k Gaussians
Sampling can be achieved by sampling the categorical distribution of k
weights followed by sampling a data point from the corresponding
Gaussian
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Why do generative modelling?

Try to understand the processes through which the data was itself
generated

Probabilistic latent variable models like VAEs or topic models (PLSA,
LDA, . . . ) for text
Models that try to disentangle latent factors like β-VAE

Understand how likely a new or previously unseen piece of data is

outlier prediction, anomaly detection, . . .

Make ‘new’ data

Make ‘fake’ data to use to train large supervised models?
‘Imagine’ new, but plausible, things?
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Differentiable Generator Networks

Generative Modelling is not new; we’ve known how to make arbitrarily
complex probabilistic graphical models for many years.

...But difficult to train and scale to real data, relying on MCMC.

The past few years has seen major progress along four loose strands:

Invertible density estimation - A way to specify complex generative
models by transforming a simple latent distribution with a series of
invertible functions.
Autoregressive models - Another way to model p(x) is to break the
model into a series of conditional distributions:
p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . .
Variational autoencoders - Latent-variable models that use a neural
network to do approximate inference.
Generative adversarial networks - A way to train generative models by
optimizing them to fool a classifier

Common thread in recent advances is that the loss functions
are end-to-end differentiable.
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Differentiable Generator Networks: key idea

We’re interested in models that transform samples of latent variables
z to

samples x , or,
distributions over samples x

The model is a (differentiable) function g(z ,θ)

typically g is a neural network.
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Example: drawing samples from N (µ,Σ)

Consider a simple generator network with a single affine layer that
maps samples N (0, I ) to N (µ,Σ):

z ∼ N (0, I ) gθ(z) x ∼ N (µ,Σ)

Note: Exact solution is x = gθ(z) = µ + Lz where L is the Cholesky
decomposition of Σ: Σ = LL>, lower triangular L.
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Generating samples

More generally, we can think of g as providing a nonlinear change of
variables that transforms a distribution over z into the desired distribution
over x:

pz(z) g(z) px(x)

For any invertible, differentiable, continuous g :

pz(z) = px(g(z))

∣∣∣∣det

(
∂g

∂z

)∣∣∣∣
Which implicitly imposes a probability distribution over x:

px(x) =
pz(g−1(x))∣∣∣det

(
∂g
∂z

)∣∣∣
Note: usually use an indirect means of learning g rather than minimise
− log(p(x)) directly
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Generating distributions

Rather than use g to provide a sample of x directly, we could instead
use g to define a conditional distribution over x , p(x |z)

For example, g might produce the parameters of a particular
distribution - e.g.:

means of Bernoulli
mean and variance of a Gaussian

The distribution over x is imposed by marginalising
z :p(x) = Ezp(x |z)
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Distributions vs Samples

In both cases (g generates samples and g generates distributions) we
can use the reparameterisation tricks we saw last lecture to train
models.

Generating distributions:

+ works for both continuous and discrete data
- need to specify the form of the output distribution

Generating samples:
+ works for continuous data

+ discrete data is recently possible - we need the STargmax

+ don’t need to specify the distribution in explicit form
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Complexity of Generative Modelling

In classification both input and output are given

Optimisation only needs to learn the mapping

Generative modelling is more complex than classification because

learning requires optimizing intractable criteria
data does not specify both input z and output x of the generator
network
learning procedure needs to determine how to arrange z space in a
useful way and how to map z to x
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Variational Autoencoders
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Variational Autoencoder (VAE)

VAEs architecturally similar to autoencoders (AEs).

VAEs (vs AEs) significantly different in their goal and mathematical
formulation.

AEs map the input into a fixed vector.

However, VAEs map the input into a distribution.

VAEs are a combination of neural networks (AEs) and graphical
models.
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Graphical Models (Background)

A graphical model is a probabilistic model for which a graph expresses
the conditional dependence structure between random variables.

Graphical models are commonly used in probability theory, statistics
—particularly Bayesian statistics— and machine learning. 1

1Definition taken from Wikipedia
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KL Divergence (Background)

Kullback–Leibler divergence, DKL(P ‖ Q): a measure of how one
probability distribution Q is different from a second, reference
probability distribution P. 2

A simple interpretation of the divergence of P from Q is the expected
excess surprise from using Q as a model when the actual distribution
is P.

While it is a distance, it is not a metric, the most familiar type of
distance: it is asymmetric in the two distributions.

2Definition taken from Wikipedia
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Variational Autoencoders (VAEs)

3

3Auto-Encoding Variational Bayes https://arxiv.org/abs/1312.6114
Jonathon Hare Generative Models 18 / 34

https://arxiv.org/abs/1312.6114


Variational Autoencoders (VAEs)
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Evidence Lower Bound (ELBO) Loss

LVAE (θ, φ) = −Ez∼qφ(z|x)log(pθ(x |z)) + DKL(qφ(z |x)||pθ(z))

We are trying to minimize the ELBO loss with respect to the model
parameters.
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Why Autoencoder?

The reconstruction term, forces each image to be unique and spread
out.

The KL term will push all the images towards the same prior.

4

4Figure taken from https://towardsdatascience.com/intuitively-understanding-variational-
autoencoders-1bfe67eb5daf
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Training Procedure

5

5Figure taken from Carl Doersch tutorial
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Reparametrization Trick Visualisation
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VAE Models and Performance

VAEs can be used with any kind of data

the distributions and network architecture just needs to be set
accordingly
e.g. it’s common to use convolutions in the encoder and transpose
convolutions in (Gaussian) decoder for image data

VAEs have nice learning dynamics; they tend to be easy to optimise
with stable convergence

VAEs have a reputation for producing blurry reconstructions of
images

Not fully understood why, but most likely related to a side effect of
maximum-likelihood training

VAEs tend to only utilise a small subset of the dimensions of z

Jonathon Hare Generative Models 24 / 34



Reconstructions Example
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Generative Adversarial Networks
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Generative Adversarial Networks (GANs)

New (old?!6) method of training deep generative models

Idea: pitch a generator and a discriminator against each other

Generator tries to draw samples from p(x)
Discriminator tries to tell if sample came from the generator (fake) or
the real world

Both discriminator and generator are deep networks (differentiable
functions)

LeCun quote ‘GANs, the most interesting idea in the last ten years in
machine learning’

6c.f. Schmidhuber
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Aside: Adversarial Learning vs. Adversarial Examples

The approach of GANs is called adversarial since the two networks have
antagonistic objectives.

This is not to be confused with adversarial examples in machine learning.

See these two papers for more details:
https://arxiv.org/pdf/1412.6572.pdf

https://arxiv.org/pdf/1312.6199.pdf
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Generative adversarial networks (conceptual)

Generator

Real world 
images

Discriminator

Real

Lo
ss

La
te

nt
 r

an
d

o
m

 v
ar

ia
b

le

Sample

Sample

Fake

5

Picture Credit: Xavier Giro-i-Nieto
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More Formally

The generator
x = g(z)

is trained so that it gets a random input z ∈ Rn from a distribution
(typically N (0, I ) or U(0, I )) and produces a sample x ∈ Rd following
the data distribution as output (ideally). Usually n << d .

The discriminator
y = d(x)

gets a sample x as input and predicts a probability y ∈ [0, 1] (or
real-valued logit of a Bernoulli distribution) determining if it is real or
fake.
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More Practically

Training a standard GAN is difficult and often results in two
undesirable behaviours

Oscillations without convergence. No guarantee that the loss will
actually decrease...

It has been shown that a GAN has saddle-point solution, rather than a
local minima.

The mode collapse problem, when the generator models very well a
small sub-population, concentrating on a few modes.

Additionally, performance is hard to assess and often boils down to
heuristic observations.
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Deep Convolutional Generative Adversarial Networks
(DCGANs)

Motivates the use of GANS
to learn reusable feature
representations from large
unlabelled datasets.

GANs known to be unstable
to train, often resulting in
generators that produce
“nonsensical outputs”.

Model exploration to identify
architectures that result in
stable training across
datasets with higher
resolution and deeper
models.
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Architecture Guidelines for Stable DCGAN

Replace pooling layers with strided convolutions in the discriminator
and fractional-strided (transpose) convolutions in the generator.

This will allow the network to learn its own spatial downsampling.

Use batchnorm in both the generator and the discriminator.

This helps deal with training problems due to poor initialisation and
helps the gradient flow.

Eliminate fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except for the
output, which uses tanh.

Use LeakyReLU activation in the discriminator for all layers.
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Summary

Generative modelling is a massive field with a long history

Differentiable generators have had a profound impact in making
models that work with real data at scale

VAEs and GANs are currently the most popular approaches to
training generators for spatial data

We’ve only scratched the surface of generative modelling
Auto-regressive approaches are popular for sequences (e.g. language
modelling).

But also for images (e.g. PixelRNN, PixelCNN)

typically RNN-based
but not necessarily - e.g. WaveNet is a convolutional auto-regressive
generative model
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