Train,
Validate,
Test

Vision
VLC= Learning avdLdc
Control

Learning Machines

(and some Deep Network Fundamentals)

Kate Farrahi & Jonathon Hare

Vision, Learning and Control
University of Southampton

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 2/27

Types of Learning

@ Supervised Learning - learn to predict an output when given an input
vector

@ Unsupervised Learning - discover a good internal representation of the
input

@ Reinforcement Learning - learn to select an action to maximize the
expectation of future rewards (payoff)

@ Self-supervised Learning - learn with targets induced by a prior on the
unlabelled training data

@ Semi-supervised Learning - learn with few labelled examples and
many unlabelled ones

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 3/27

Supervised Learning

Newell, Alejandro, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human

pose estimation.” ECCV'16. Springer, 2016.
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 4/27

Unsupervised Learning

s Cluster0
» Cluster1
» Cluster 2

Cluster 3
e Cluster 4

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 5/27
Reinforcement Learning

environment

from state s, take action a

get reward R, new state s’

Reference: Wikipedia

https://simple.wikipedia.org/wiki/Reinforcement_learning
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 6/27

https://simple.wikipedia.org/wiki/Reinforcement_learning

Self-supervised Learning

@ The basic idea of self-supervised learning (SSL) is to automatically
generate some kind of supervisory signal to solve some task (typically,
to learn representations of the data or to automatically label a
dataset).

@ SSL be regarded as an intermediate form between supervised and
unsupervised learning.

@ Training can occur with data of lower quality.

@ SSL more closely imitates the way humans learn to classify objects.

Reference: Wikipedia https://en.wikipedia.org/wiki/Self-supervised_learning
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 7/27

Semi-supervised Learning

Semi-supervised learning

° oo

o e
(@] o A A °
o - o
o Al
Labeled Data

(@)

o® A A
A

o
o -~ (@] A
o A
Classification plane
Supervised Learning Semi-Supervised Learning

(©)

Jeremy Howard. The wonderful and terrifying implications of computers that can learn.
TEDxBrussels. http://www.ted.com/talks/jeremy_howard_the_wonderful_and_
terrifying_implications_of_computers_that_can_learn

Image taken from:

https://medium.com /dataseries /two-minutes-of-semi-supervised-learning-f0eb62729530
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 8/27

https://en.wikipedia.org/wiki/Self-supervised_learning
http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn
http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn

Generative Models

@ Many unsupervised and self-supervised models can be classed as
‘Generative Models'.

@ Given unlabelled data X, a unsupervised generative model learns
P[X].
e Could be direct modelling of the data (e.g. Gaussian Mixture Models)
e Could be indirect modelling by learning to map the data to a
parametric distribution in a lower dimensional space (e.g. a VAE's
Encoder) or by learning a mapping from a parameterised distribution to
the real data space (e.g. a VAE Decoder or GAN)

@ These are characterised by an ability to ‘sample’ the model to ‘create’
new data

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 9/27

Generative vs. Discriminative Models (II)

Generative vs. discriminative approaches to classification use different
statistical modelling.

@ Discriminative models learn the boundary between classes. A
(probabilistic) discriminative model is a model of the conditional
probability of the target Y given an observation X: P[Y|X].

@ Generative models of labelled data model the distribution of individual
classes. Given an observable variable X and a target variable Y/, a
generative model is a statistical model that tries to model P[X|Y]
and P[Y] in order to model the joint probability distribution P[X, Y].

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 10 /27

Two Types of Supervised Learning

@ Regression: The machine is asked predict k numerical values given
some input. The machine is a function f : R" — RX.

@ Classification: The machine is asked to specify which of k categories
some input belongs to.

e Multiclass classification - target is one of the k classes

e Multilabel classification - target is some number of the k classes

o In both cases, the machine is a function f : R” — {1,..., k} (although
it is most common for the learning algorithm to actually learn

f:R" — RK).
@ Note that there are lots of exceptions in the form the inputs (and

outputs) can take though! We'll see lots of variations in the coming
weeks.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 11 /27

How Supervised Learning Typically Works

@ Start by choosing a model-class: y = f(x; W) where the model-class
f is a way of using some numerical parameters, W, to map each
input vector x to a predicted output .

@ Learning means adjusting the parameters to reduce the discrepancy
between the true target output y on each training case and the
output y, predicted by the model.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 12 /27

Let's look at an unbiased Multilayer Perceptron...

Input Hidden Output
layer layer layer
w2
01—
02)—

Without loss of generality, we can write the above as:
y = g(f(x; W), W) = g(WF(WwMx))

where f and g are activation functions.
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 13 /27

Common Activation Functions

@ Identity

e Sigmoid (aka Logistic)

@ Hyperbolic Tangent (tanh)

@ Rectified Linear Unit (ReLU) (aka Threshold Linear)

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 14 /27

Final layer activations

y =g(WOf(wlhx))

@ What form should the final layer function g take?
@ It depends on the task (and on the chosen loss function)...

o For regression it is typically linear (e.g. identity), but you might choose
others if you say wanted to clamp the range of the network.

e For binary classification (MLP has a single output), one would choose
Sigmoid

e For multilabel classification, typically one would choose Sigmoid

e For multiclass classification, typically you would use the Softmax
function

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 15 /27

The softmax is an activation function used at the output layer of a neural
network that forces the outputs to sum to 1 so that they can represent a
probability distribution across a discrete mutually exclusive alternatives.
softmax(z); = Zjill = Vi=1,2,...,K
@ Note that unlike the other activation functions you've seen, softmax
makes reference to all the elements in the output.
@ The output of a softmax layer is a set of positive numbers which sum
up to 1 and can be thought of as a probability distribution.

@ Note:
350&(;12"’_‘)((2)" = softmax(z;)(1 — softmax(z;))
8softg1zax(z)f = softmax(z;)(1(i =j) — SOftmaX(Zj))
J

= softmax(z;)(d;; — softmax(z;))

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 16 /27

Ok, so let's talk loss functions

@ The choice of loss function depends on the task (e.g.
classification /regression /something else)

@ The choice also depends on the activation function of the last layer

e Some classification losses require raw outputs (e.g. a linear layer) of
the network as their input

@ These are often called unnormalised log probabilities or logits

@ An example would be hinge-loss used to create a Support Vector
Machine that maximises the margin — e.g.:
Lhinge(V,y) = max(0,1 — y - ¥) with a true label, y € {—1,1}, for
binary classification.

@ There are many different loss functions we might encounter (MSE,
Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...)
for different tasks.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 17 /27

The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

@ Mean Squared Error (MSE) loss for a single data point (here assumed
to be a vector, but equally applicable to a scalar) is given by
Imse(¥,y) =2 iPi—yi) = —y) (¥ —y)

@ We often multiply this by a constant factor of % — can anyone
guess/remember why?

® (ymse(y,y) is the predominant choice for regression problems with
linear activation in the last layer

@ For a classification problem with Softmax or Sigmoidal (or really
anything non-linear) activations, MSE can cause slow learning,
especially if the predictions are very far off the targets

e Gradients of /yse are proportional to the difference in target and

predicted multiplied by the gradient of the activation function?
e The Cross-Entropy loss function is generally a better choice in this case

http: //neuralnetworksanddeeplearning.com /chap3.html
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 18 /27

Binary Cross-Entropy

For the binary classification case:
lpce(9,y) = —ylog(y) — (1 — y)log(1 - y)

@ The cross-entropy cost function is non-negative, {gcg > 0

@ /gce ~ 0 when the prediction and targets are equal (i.e. y =0 and
y=0orwheny=1and y =1)

e With Sigmoidal final layer, gﬁsff) is proportional to just the error in

the output (¥ — y) and therefore, the larger the error, the faster the
network will learn!

@ Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 19 /27

Binary Cross-Entropy — Intuition

@ The cross-entropy can be thought of as a measure of surprise.

@ Given some input x;, we can think of y; as the estimated probability

that x; belongs to class 1, and 1 — y; is the estimated probability that
it belongs to class 0.

@ Note the extreme case of infinite cross-entropy, if your model believes
that a class has 0 probability of occurrence, and yet the class appears
in the data, the ‘surprise’ of your model will be infinitely great.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 20/27

Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with multiple
sigmoidal outputs you just sum the BCE over the outputs:

lece = — > 11 lyklog(Pk) + (1 — yi) log(1 — $x)]

where K is the number of classes of the classification problem, y € RX.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 21/27

Multiclass classification with Softmax Outputs

@ Softmax can be thought of making the K outputs of the network
mimic a probability distribution.

@ The target label y could also be represented as a distribution with a
single 1 and zeros everywhere else.

e e.g. they are “one-hot encoded”.

@ In such a case, the obvious loss function is the negative log likelihood
of the Categorical distribution (aka Multinoulli, Generalised Bernoulli,
Multinomial with one sample)?: fy;; = — Z,}le yi log v

e Note that in practice as y is zero for all but one class you don't

actually do this summation, and if y is an integer class index you can
write fy g = —log ¥, .

e PyTorch combines LogSoftmax with NLL in one loss and calls this
“Categorical Cross-Entropy” (so you would use this with a linear
output layer)

2Note: Keras calls this function ‘Categorical Cross-Entropy’; you would need to have a
Softmax output layer to use this
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 22 /27

Reminder: Gradient Descent

o Define total loss as £ =}, ,yep U(f(x,8), y) for some loss function
¢, dataset D and model f with learnable parameters 6.

@ Define how many passes over the data to make (each one known as
an Epoch)

@ Define a learning rate 7

Gradient Descent updates the parameters 8 by moving them in the
direction of the negative gradient with respect to the total loss £ by the
learning rate n multiplied by the gradient:

for each Epoch:
9(—9—77V9£

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 23 /27

Reminder: Stochastic Gradient Descent

@ Define loss function ¢, dataset D and model f with learnable
parameters 6.

@ Define how many passes over the data to make (each one known as
an Epoch)

@ Define a learning rate 1

Stochastic Gradient Descent updates the parameters @ by moving them in
the direction of the negative gradient with respect to the loss of a single
item /¢ by the learning rate n multiplied by the gradient:

for each Epoch:
for each (x,y) € D:
0« 6 —nVel

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 24 /27

A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of
algebraic objects3.

A tensor T can be thought of as a generalization of scalars, vectors and
matrices to a single algebraic object.

We can just think of this as a multidimensional array?.

@ A 0D tensor is a scalar
A 1D tensor is a vector

°
@ A 2D tensor is a matrix

@ A 3D tensor can be thought of as a vector of identically sized matrices
°

A 4D tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3D tensors

3This statement is always entirely true
*This statement will upset mathematicians and physicists because its not always true for

them (but it is for us!).
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 25/27

Operations on Tensors in PyTorch

@ PyTorch lets you do all the standard matrix operations on 2D tensors

e including important things you might not yet have seen like the
hadamard product of two N x M matrices: A® B)

@ You can do element-wise add/divide/subtract/multiply to ND-tensors
e and even apply scalar functions element-wise (log, sin, exp, ...)
@ PyTorch often lets you broadcast operations (just like in numpy)

e if a PyTorch operation supports broadcast, then its Tensor arguments
can be automatically expanded to be of equal sizes (without making
copies of the data).’

®Important - read and understand this after the lab next week:

https://pytorch.org/docs/stable/notes/broadcasting.html
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 26 /27

Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/jonhare/
d98813b2224dddbb234d2031510878e1/notebook. ipynb

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 27 /27

https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb

