# Train, Validate, Test



Learning Machines (and some Deep Network Fundamentals)

Kate Farrahi & Jonathon Hare

Vision, Learning and Control University of Southampton

- Supervised Learning learn to predict an output when given an input vector
- Unsupervised Learning discover a good internal representation of the input
- Reinforcement Learning learn to select an action to maximize the expectation of future rewards (payoff)
- Self-supervised Learning learn with targets induced by a prior on the unlabelled training data
- Semi-supervised Learning learn with few labelled examples and many unlabelled ones

COMP6248 Deep Learning

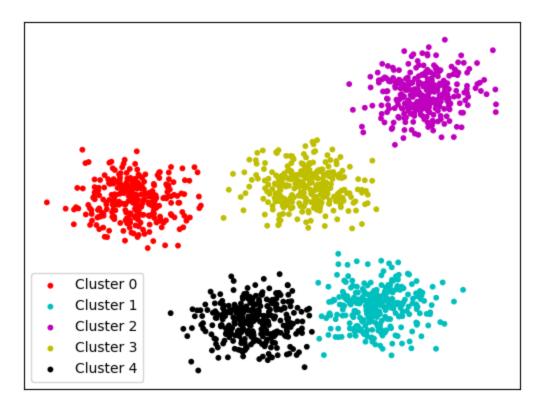
# Supervised Learning



Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV'16. Springer, 2016.

Kate Farrahi & Jonathon Hare

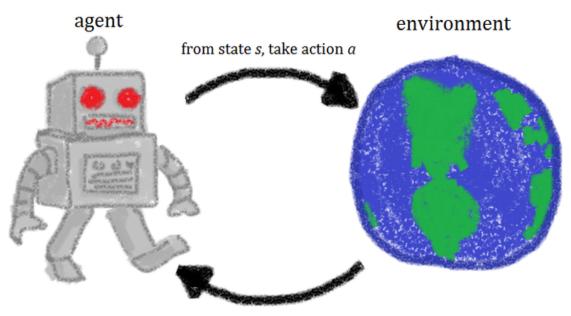
COMP6248 Deep Learning



COMP6248 Deep Learning

5 / 27

# Reinforcement Learning



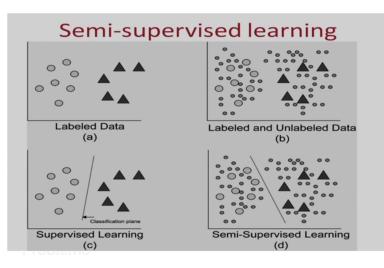
get reward R, new state s'

Reference: Wikipedia https://simple.wikipedia.org/wiki/Reinforcement\_learning Kate Farrahi & Jonathon Hare COMP6248 Deep Learning

- The basic idea of self-supervised learning (SSL) is to automatically generate some kind of supervisory signal to solve some task (typically, to learn representations of the data or to automatically label a dataset).
- SSL be regarded as an intermediate form between supervised and unsupervised learning.
- Training can occur with data of lower quality.
- SSL more closely imitates the way humans learn to classify objects.

Reference:Wikipedia https://en.wikipedia.org/wiki/Self-supervised\_learningKate Farrahi & Jonathon HareCOMP6248 Deep Learning7/27

### Semi-supervised Learning



Jeremy Howard. The wonderful and terrifying implications of computers that can learn. TEDxBrussels. http://www.ted.com/talks/jeremy\_howard\_the\_wonderful\_and\_ terrifying\_implications\_of\_computers\_that\_can\_learn Image taken from: https://medium.com/dataseries/two-minutes-of-semi-supervised-learning-f0eb62729530

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

- Many unsupervised and self-supervised models can be classed as 'Generative Models'.
- Given unlabelled data X, a unsupervised generative model learns P[X].
  - Could be direct modelling of the data (e.g. Gaussian Mixture Models)
  - Could be indirect modelling by learning to map the data to a parametric distribution in a lower dimensional space (e.g. a VAE's Encoder) or by learning a mapping from a parameterised distribution to the real data space (e.g. a VAE Decoder or GAN)
- These are characterised by an ability to 'sample' the model to 'create' new data

COMP6248 Deep Learning

### Generative vs. Discriminative Models (II)

Generative vs. discriminative approaches to classification use different statistical modelling.

- Discriminative models learn the boundary between classes. A (probabilistic) discriminative model is a model of the conditional probability of the target Y given an observation X: P[Y|X].
- Generative models of labelled data model the distribution of individual classes. Given an observable variable X and a target variable Y, a generative model is a statistical model that tries to model P[X|Y] and P[Y] in order to model the joint probability distribution P[X, Y].

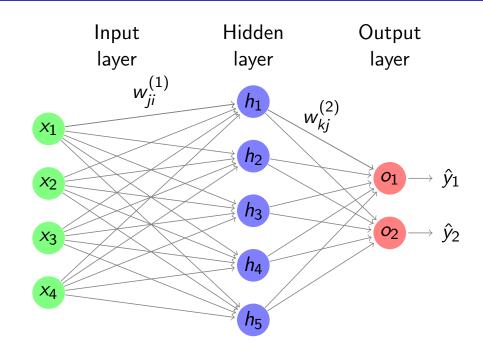
- Regression: The machine is asked predict k numerical values given some input. The machine is a function  $f : \mathbb{R}^n \to \mathbb{R}^k$ .
- Classification: The machine is asked to specify which of k categories some input belongs to.
  - Multiclass classification target is one of the k classes
  - Multilabel classification target is some number of the k classes
  - In both cases, the machine is a function f : ℝ<sup>n</sup> → {1, ..., k} (although it is most common for the learning algorithm to actually learn *f* : ℝ<sup>n</sup> → ℝ<sup>k</sup>).
- Note that there are lots of exceptions in the form the inputs (and outputs) can take though! We'll see lots of variations in the coming weeks.

COMP6248 Deep Learning

# How Supervised Learning Typically Works

- Start by choosing a model-class: ŷ = f(x; W) where the model-class f is a way of using some numerical parameters, W, to map each input vector x to a predicted output ŷ.
- Learning means adjusting the parameters to reduce the discrepancy between the true target output y on each training case and the output  $\hat{y}$ , predicted by the model.

## Let's look at an unbiased Multilayer Perceptron...



Without loss of generality, we can write the above as:

$$\hat{y} = g(f(x; W^{(1)}); W^{(2)}) = g(W^{(2)}f(W^{(1)}x))$$

where f and g are activation functions.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning

13/27

### **Common Activation Functions**

- Identity
- Sigmoid (aka Logistic)
- Hyperbolic Tangent (tanh)
- Rectified Linear Unit (ReLU) (aka Threshold Linear)

#### $\hat{y} = g(\boldsymbol{W}^{(2)}f(\boldsymbol{W}^{(1)}\boldsymbol{x}))$

- What form should the final layer function g take?
- It depends on the task (and on the chosen loss function)...
  - For regression it is typically linear (e.g. identity), but you might choose others if you say wanted to clamp the range of the network.
  - For binary classification (MLP has a single output), one would choose Sigmoid
  - For multilabel classification, typically one would choose Sigmoid
  - For multiclass classification, typically you would use the Softmax function

#### Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

#### Softmax

The softmax is an activation function used at the output layer of a neural network that forces the outputs to sum to 1 so that they can represent a probability distribution across a discrete mutually exclusive alternatives.

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \qquad \forall i = 1, 2, \dots, K$$

- Note that unlike the other activation functions you've seen, softmax makes reference to all the elements in the output.
- The output of a softmax layer is a set of positive numbers which sum up to 1 and can be thought of as a probability distribution.
- Note:

$$\frac{\partial \operatorname{softmax}(\boldsymbol{z})_i}{\partial z_i} = \operatorname{softmax}(z_i)(1 - \operatorname{softmax}(z_i))$$
$$\frac{\partial \operatorname{softmax}(\boldsymbol{z})_i}{\partial z_j} = \operatorname{softmax}(z_i)(1(i = j) - \operatorname{softmax}(z_j))$$
$$= \operatorname{softmax}(z_i)(\delta_{ij} - \operatorname{softmax}(z_j))$$

# Ok, so let's talk loss functions

- The choice of loss function depends on the task (e.g. classification/regression/something else)
- The choice also depends on the activation function of the last layer
  - Some classification losses require raw outputs (e.g. a linear layer) of the network as their input
    - These are often called unnormalised log probabilities or logits
    - An example would be hinge-loss used to create a Support Vector Machine that maximises the margin — e.g.: ℓ<sub>hinge</sub>(ŷ, y) = max(0, 1 - y · ŷ) with a true label, y ∈ {-1,1}, for binary classification.
- There are many different loss functions we might encounter (MSE, Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...) for different tasks.

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

17 / 27

# The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

- Mean Squared Error (MSE) loss for a single data point (here assumed to be a vector, but equally applicable to a scalar) is given by *ℓ*<sub>MSE</sub>(ŷ, y) = ∑<sub>i</sub>(ŷ<sub>i</sub> - y<sub>i</sub>)<sup>2</sup> = (ŷ - y)<sup>T</sup>(ŷ - y)
- We often multiply this by a constant factor of <sup>1</sup>/<sub>2</sub> can anyone guess/remember why?
- $\ell_{MSE}(\hat{y}, y)$  is the predominant choice for regression problems with linear activation in the last layer
- For a classification problem with Softmax or Sigmoidal (or really anything non-linear) activations, MSE can cause slow learning, especially if the predictions are very far off the targets
  - Gradients of  $\ell_{MSE}$  are proportional to the difference in target and predicted multiplied by the gradient of the activation function<sup>1</sup>
  - The Cross-Entropy loss function is generally a better choice in this case

<sup>1</sup>http://neuralnetworksanddeeplearning.com/chap3.html Kate Farrahi & Jonathon Hare COMP6248 Deep Learning

# Binary Cross-Entropy

For the binary classification case:

$$\ell_{BCE}(\hat{y}, y) = -y \log(\hat{y}) - (1-y) \log(1-\hat{y})$$

- The cross-entropy cost function is non-negative,  $\ell_{BCE} > 0$
- $\ell_{BCE} \approx 0$  when the prediction and targets are equal (i.e. y = 0 and  $\hat{y} = 0$  or when y = 1 and  $\hat{y} = 1$ )
- With Sigmoidal final layer,  $\frac{\partial \ell_{BCE}}{\partial W_i^{(2)}}$  is proportional to just the error in the output  $(\hat{y} y)$  and therefore, the larger the error, the faster the network will learn!
- Note that the BCE is the negative log likelihood of the Bernoulli Distribution

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

# Binary Cross-Entropy — Intuition

- The cross-entropy can be thought of as a measure of surprise.
- Given some input x<sub>i</sub>, we can think of ŷ<sub>i</sub> as the estimated probability that x<sub>i</sub> belongs to class 1, and 1 − ŷ<sub>i</sub> is the estimated probability that it belongs to class 0.
- Note the extreme case of infinite cross-entropy, if your model believes that a class has 0 probability of occurrence, and yet the class appears in the data, the 'surprise' of your model will be infinitely great.

In the case of multi-label classification with a network with multiple sigmoidal outputs you just sum the BCE over the outputs:

$$\ell_{BCE} = -\sum_{k=1}^{K} [y_k \log(\hat{y}_k) + (1 - y_k) \log(1 - \hat{y}_k)]$$

where K is the number of classes of the classification problem,  $\hat{y} \in \mathbb{R}^{K}$ .

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

# Multiclass classification with Softmax Outputs

- Softmax can be thought of making the *K* outputs of the network mimic a probability distribution.
- The target label y could also be represented as a distribution with a single 1 and zeros everywhere else.
  - e.g. they are "one-hot encoded".
- In such a case, the obvious loss function is the *negative log likelihood* of the Categorical distribution (aka Multinoulli, Generalised Bernoulli, Multinomial with one sample)<sup>2</sup>:  $\ell_{NLL} = -\sum_{k=1}^{K} y_k \log \hat{y}_k$ 
  - Note that in practice as  $y_k$  is zero for all but one class you don't actually do this summation, and if y is an integer class index you can write  $\ell_{NLL} = -\log \hat{y}_y$ .
  - PyTorch combines LogSoftmax with NLL in one loss and calls this "Categorical Cross-Entropy" (so you would use this with a *linear output layer*)

Kate Farrahi & Jonathon Hare

<sup>&</sup>lt;sup>2</sup>Note: Keras calls this function 'Categorical Cross-Entropy'; you would need to have a Softmax output layer to use this

- Define total loss as  $\mathcal{L} = \sum_{(x,y)\in D} \ell(f(x,\theta), y)$  for some loss function  $\ell$ , dataset **D** and model f with learnable parameters  $\theta$ .
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate  $\eta$

Gradient Descent updates the parameters  $\theta$  by moving them in the direction of the negative gradient with respect to the **total loss**  $\mathcal{L}$  by the learning rate  $\eta$  multiplied by the gradient:

for each Epoch: $oldsymbol{ heta} \leftarrow oldsymbol{ heta} - \eta 
abla_{oldsymbol{ heta}} \mathcal{L}$ 

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

# Reminder: Stochastic Gradient Descent

- Define loss function  $\ell$ , dataset **D** and model f with learnable parameters  $\theta$ .
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate  $\eta$

Stochastic Gradient Descent updates the parameters  $\theta$  by moving them in the direction of the negative gradient with respect to the loss of a **single item**  $\ell$  by the learning rate  $\eta$  multiplied by the gradient:

```
for each Epoch:
for each (m{x},m{y})\inm{D}:
m{	heta}\leftarrowm{	heta}-\eta
abla_{m{	heta}}\ell
```

# A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of algebraic objects<sup>3</sup>.

A tensor T can be thought of as a generalization of scalars, vectors and matrices to a single algebraic object.

We can just think of this as a multidimensional array<sup>4</sup>.

- A 0*D* tensor is a scalar
- A 1D tensor is a vector
- A 2D tensor is a matrix
- A 3D tensor can be thought of as a vector of identically sized matrices
- A 4D tensor can be thought of as a matrix of identically sized matrices or a sequence of 3D tensors

• . . .

<sup>3</sup>This statement is always entirely true

<sup>4</sup>This statement will upset mathematicians and physicists because its not always true for them (but it is for us!).

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning

25 / 27

# Operations on Tensors in PyTorch

- PyTorch lets you do all the standard matrix operations on 2D tensors
  - including important things you might not yet have seen like the hadamard product of two  $N \times M$  matrices:  $A \odot B$ )
- You can do element-wise add/divide/subtract/multiply to ND-tensors
  - and even apply scalar functions element-wise (log, sin, exp, ...)
- PyTorch often lets you broadcast operations (just like in numpy)
  - if a PyTorch operation supports broadcast, then its Tensor arguments can be automatically expanded to be of equal sizes (without making copies of the data).<sup>5</sup>

<sup>5</sup>Important - read and understand this after the lab next week: https://pytorch.org/docs/stable/notes/broadcasting.html PyTorch Tensor 101: https://colab.research.google.com/gist/jonhare/ d98813b2224dddbb234d2031510878e1/notebook.ipynb

Kate Farrahi & Jonathon Hare

COMP6248 Deep Learning