
Train,
Validate,
Test

Learning Machines
(and some Deep Network Fundamentals)

Kate Farrahi & Jonathon Hare

Vision, Learning and Control
University of Southampton

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 2 / 27



Types of Learning

Supervised Learning - learn to predict an output when given an input
vector

Unsupervised Learning - discover a good internal representation of the
input

Reinforcement Learning - learn to select an action to maximize the
expectation of future rewards (payoff)

Self-supervised Learning - learn with targets induced by a prior on the
unlabelled training data

Semi-supervised Learning - learn with few labelled examples and
many unlabelled ones

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 3 / 27

Supervised Learning
8 Newell et al.

Fig. 5. Example output on MPII’s test set.

information for the network to determine which person deserves the annotation.
We deal with this by training the network to exclusively annotate the person in
the direct center. This is done in FLIC by centering along the x-axis according to
the torsobox annotation - no vertical adjustment or scale normalization is done.
For MPII, it is standard to utilize the scale and center annotations provided with
all images. For each sample, these values are used to crop the image around the
target person. All input images are then resized to 256x256 pixels. We do data
augmentation that includes rotation (+/- 30 degrees), and scaling (.75-1.25). We
avoid translation augmentation of the image since location of the target person
is the critical cue determining who should be annotated by the network.

The network is trained using Torch7 [48] and for optimization we use rmsprop
[49] with a learning rate of 2.5e-4. Training takes about 3 days on a 12 GB
NVIDIA TitanX GPU. We drop the learning rate once by a factor of 5 after
validation accuracy plateaus. Batch normalization [13] is also used to improve
training. A single forward pass of the network takes 75 ms. For generating final
test predictions we run both the original input and a flipped version of the image
through the network and average the heatmaps together (accounting for a 1%
average improvement on validation). The final prediction of the network is the
max activating location of the heatmap for a given joint.

The same technique as Tompson et al. [15] is used for supervision. A Mean-
Squared Error (MSE) loss is applied comparing the predicted heatmap to a
ground-truth heatmap consisting of a 2D gaussian (with standard deviation of
1 px) centered on the joint location. To improve performance at high precision
thresholds the prediction is o↵set by a quarter of a pixel in the direction of its
next highest neighbor before transforming back to the original coordinate space
of the image. In MPII Human Pose, some joints do not have a corresponding

Newell, Alejandro, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for human
pose estimation.” ECCV’16. Springer, 2016.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 4 / 27



Unsupervised Learning

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 5 / 27

Reinforcement Learning

Reference: Wikipedia
https://simple.wikipedia.org/wiki/Reinforcement_learning

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 6 / 27

https://simple.wikipedia.org/wiki/Reinforcement_learning


Self-supervised Learning

The basic idea of self-supervised learning (SSL) is to automatically
generate some kind of supervisory signal to solve some task (typically,
to learn representations of the data or to automatically label a
dataset).

SSL be regarded as an intermediate form between supervised and
unsupervised learning.

Training can occur with data of lower quality.

SSL more closely imitates the way humans learn to classify objects.

Reference: Wikipedia https://en.wikipedia.org/wiki/Self-supervised_learning
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 7 / 27

Semi-supervised Learning

Jeremy Howard. The wonderful and terrifying implications of computers that can learn.
TEDxBrussels. http://www.ted.com/talks/jeremy_howard_the_wonderful_and_

terrifying_implications_of_computers_that_can_learn

Image taken from:
https://medium.com/dataseries/two-minutes-of-semi-supervised-learning-f0eb62729530

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 8 / 27

https://en.wikipedia.org/wiki/Self-supervised_learning
http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn
http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn


Generative Models

Many unsupervised and self-supervised models can be classed as
‘Generative Models’.

Given unlabelled data X , a unsupervised generative model learns
P[X ].

Could be direct modelling of the data (e.g. Gaussian Mixture Models)
Could be indirect modelling by learning to map the data to a
parametric distribution in a lower dimensional space (e.g. a VAE’s
Encoder) or by learning a mapping from a parameterised distribution to
the real data space (e.g. a VAE Decoder or GAN)

These are characterised by an ability to ‘sample’ the model to ‘create’
new data

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 9 / 27

Generative vs. Discriminative Models (II)

Generative vs. discriminative approaches to classification use different
statistical modelling.

Discriminative models learn the boundary between classes. A
(probabilistic) discriminative model is a model of the conditional
probability of the target Y given an observation X : P[Y |X ].

Generative models of labelled data model the distribution of individual
classes. Given an observable variable X and a target variable Y , a
generative model is a statistical model that tries to model P[X |Y ]
and P[Y ] in order to model the joint probability distribution P[X ,Y ].

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 10 / 27



Two Types of Supervised Learning

Regression: The machine is asked predict k numerical values given
some input. The machine is a function f : Rn → Rk .

Classification: The machine is asked to specify which of k categories
some input belongs to.

Multiclass classification - target is one of the k classes
Multilabel classification - target is some number of the k classes
In both cases, the machine is a function f : Rn → {1, ..., k} (although
it is most common for the learning algorithm to actually learn
f̂ : Rn → Rk).

Note that there are lots of exceptions in the form the inputs (and
outputs) can take though! We’ll see lots of variations in the coming
weeks.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 11 / 27

How Supervised Learning Typically Works

Start by choosing a model-class: ŷ = f (x ; W ) where the model-class
f is a way of using some numerical parameters, W , to map each
input vector x to a predicted output ŷ .

Learning means adjusting the parameters to reduce the discrepancy
between the true target output y on each training case and the
output ŷ , predicted by the model.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 12 / 27



Let’s look at an unbiased Multilayer Perceptron...

x1

x2

x3

x4

h1

h2

h3

h4

h5

o1 ŷ1

o2 ŷ2

w
(1)
ji

w
(2)
kj

Hidden
layer

Input
layer

Output
layer

Without loss of generality, we can write the above as:

ŷ = g(f (x ; W (1)); W (2)) = g(W (2)f (W (1)x))

where f and g are activation functions.
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 13 / 27

Common Activation Functions

Identity

Sigmoid (aka Logistic)

Hyperbolic Tangent (tanh)

Rectified Linear Unit (ReLU) (aka Threshold Linear)

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 14 / 27



Final layer activations

ŷ = g(W (2)f (W (1)x))

What form should the final layer function g take?

It depends on the task (and on the chosen loss function)...

For regression it is typically linear (e.g. identity), but you might choose
others if you say wanted to clamp the range of the network.
For binary classification (MLP has a single output), one would choose
Sigmoid
For multilabel classification, typically one would choose Sigmoid
For multiclass classification, typically you would use the Softmax
function

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 15 / 27

Softmax

The softmax is an activation function used at the output layer of a neural
network that forces the outputs to sum to 1 so that they can represent a
probability distribution across a discrete mutually exclusive alternatives.

softmax(z)i = ezi∑K
j=1 e

zj
∀i = 1, 2, . . . ,K

Note that unlike the other activation functions you’ve seen, softmax
makes reference to all the elements in the output.

The output of a softmax layer is a set of positive numbers which sum
up to 1 and can be thought of as a probability distribution.

Note:

∂ softmax(z)i
∂zi

= softmax(zi )(1− softmax(zi ))

∂ softmax(z)i
∂zj

= softmax(zi )(1(i = j)− softmax(zj))

= softmax(zi )(δij − softmax(zj))

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 16 / 27



Ok, so let’s talk loss functions

The choice of loss function depends on the task (e.g.
classification/regression/something else)

The choice also depends on the activation function of the last layer
Some classification losses require raw outputs (e.g. a linear layer) of
the network as their input

These are often called unnormalised log probabilities or logits
An example would be hinge-loss used to create a Support Vector
Machine that maximises the margin — e.g.:
`hinge(ŷ , y) = max(0, 1− y · ŷ) with a true label, y ∈ {−1, 1}, for
binary classification.

There are many different loss functions we might encounter (MSE,
Cross-Entropy, KL-Divergence, huber, L1 (MAE), CTC, Triplet, ...)
for different tasks.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 17 / 27

The Cost Function (measure of discrepancy)

Recall from Foundations of Machine Learning:

Mean Squared Error (MSE) loss for a single data point (here assumed
to be a vector, but equally applicable to a scalar) is given by
`MSE (ŷ , y) =

∑
i (ŷi − yi )

2 = (ŷ − y)>(ŷ − y)

We often multiply this by a constant factor of 1
2 — can anyone

guess/remember why?

`MSE (ŷ , y) is the predominant choice for regression problems with
linear activation in the last layer

For a classification problem with Softmax or Sigmoidal (or really
anything non-linear) activations, MSE can cause slow learning,
especially if the predictions are very far off the targets

Gradients of `MSE are proportional to the difference in target and
predicted multiplied by the gradient of the activation function1

The Cross-Entropy loss function is generally a better choice in this case

1http://neuralnetworksanddeeplearning.com/chap3.html
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 18 / 27



Binary Cross-Entropy

For the binary classification case:

`BCE (ŷ , y) = −y log(ŷ)− (1− y) log(1− ŷ)

The cross-entropy cost function is non-negative, `BCE > 0

`BCE ≈ 0 when the prediction and targets are equal (i.e. y = 0 and
ŷ = 0 or when y = 1 and ŷ = 1)

With Sigmoidal final layer, ∂`BCE

∂W (2)
i

is proportional to just the error in

the output (ŷ − y) and therefore, the larger the error, the faster the
network will learn!

Note that the BCE is the negative log likelihood of the Bernoulli
Distribution

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 19 / 27

Binary Cross-Entropy — Intuition

The cross-entropy can be thought of as a measure of surprise.

Given some input xi , we can think of ŷi as the estimated probability
that xi belongs to class 1, and 1− ŷi is the estimated probability that
it belongs to class 0.

Note the extreme case of infinite cross-entropy, if your model believes
that a class has 0 probability of occurrence, and yet the class appears
in the data, the ‘surprise’ of your model will be infinitely great.

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 20 / 27



Binary Cross-Entropy for multiple labels

In the case of multi-label classification with a network with multiple
sigmoidal outputs you just sum the BCE over the outputs:

`BCE = −
∑K

k=1[yk log(ŷk) + (1− yk) log(1− ŷk)]

where K is the number of classes of the classification problem, ŷ ∈ RK .

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 21 / 27

Multiclass classification with Softmax Outputs

Softmax can be thought of making the K outputs of the network
mimic a probability distribution.

The target label y could also be represented as a distribution with a
single 1 and zeros everywhere else.

e.g. they are “one-hot encoded”.

In such a case, the obvious loss function is the negative log likelihood
of the Categorical distribution (aka Multinoulli, Generalised Bernoulli,

Multinomial with one sample)2: `NLL = −
∑K

k=1 yk log ŷk
Note that in practice as yk is zero for all but one class you don’t
actually do this summation, and if y is an integer class index you can
write `NLL = − log ŷy .

PyTorch combines LogSoftmax with NLL in one loss and calls this
“Categorical Cross-Entropy” (so you would use this with a linear
output layer)

2Note: Keras calls this function ‘Categorical Cross-Entropy’; you would need to have a
Softmax output layer to use this

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 22 / 27



Reminder: Gradient Descent

Define total loss as L =
∑

(x ,y)∈D `(f (x ,θ), y) for some loss function
`, dataset D and model f with learnable parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate η

Gradient Descent updates the parameters θ by moving them in the
direction of the negative gradient with respect to the total loss L by the
learning rate η multiplied by the gradient:

for each Epoch:

θ ← θ − η∇θL

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 23 / 27

Reminder: Stochastic Gradient Descent

Define loss function `, dataset D and model f with learnable
parameters θ.

Define how many passes over the data to make (each one known as
an Epoch)

Define a learning rate η

Stochastic Gradient Descent updates the parameters θ by moving them in
the direction of the negative gradient with respect to the loss of a single
item ` by the learning rate η multiplied by the gradient:

for each Epoch:

for each (x , y) ∈ D:

θ ← θ − η∇θ`

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 24 / 27



A Quick Introduction to Tensors

Broadly speaking a tensor is defined as a linear mapping between sets of
algebraic objects3.
A tensor T can be thought of as a generalization of scalars, vectors and
matrices to a single algebraic object.
We can just think of this as a multidimensional array4.

A 0D tensor is a scalar

A 1D tensor is a vector

A 2D tensor is a matrix

A 3D tensor can be thought of as a vector of identically sized matrices

A 4D tensor can be thought of as a matrix of identically sized
matrices or a sequence of 3D tensors

. . .

3This statement is always entirely true
4This statement will upset mathematicians and physicists because its not always true for

them (but it is for us!).
Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 25 / 27

Operations on Tensors in PyTorch

PyTorch lets you do all the standard matrix operations on 2D tensors

including important things you might not yet have seen like the
hadamard product of two N ×M matrices: A� B)

You can do element-wise add/divide/subtract/multiply to ND-tensors

and even apply scalar functions element-wise (log, sin, exp, ...)

PyTorch often lets you broadcast operations (just like in numpy)

if a PyTorch operation supports broadcast, then its Tensor arguments
can be automatically expanded to be of equal sizes (without making
copies of the data).5

5Important - read and understand this after the lab next week:
https://pytorch.org/docs/stable/notes/broadcasting.html

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 26 / 27



Homework

PyTorch Tensor 101:
https://colab.research.google.com/gist/jonhare/

d98813b2224dddbb234d2031510878e1/notebook.ipynb

Kate Farrahi & Jonathon Hare COMP6248 Deep Learning 27 / 27

https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb
https://colab.research.google.com/gist/jonhare/d98813b2224dddbb234d2031510878e1/notebook.ipynb

