Minimise
your
Loss

Optimisation

Jonathon Hare

Vision, Learning and Control
University of Southampton
We’ll start up by looking again at gradient descent algorithms and their behaviours...

Reminder: Gradient Descent

- Define total loss as $\mathcal{L} = -\sum_{(x,y) \in D} \ell(g(x, \theta), y)$ for some loss function ℓ, dataset D and model g with learnable parameters θ.
- Define how many passes over the data to make (each one known as an Epoch).
- Define a learning rate η.

Gradient Descent updates the parameters θ by moving them in the direction of the negative gradient with respect to the total loss \mathcal{L} by the learning rate η multiplied by the gradient:

For each Epoch:

$$\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}$$
Gradient Descent

- Gradient Descent has good statistical properties (very low variance)
- But is very data inefficient (particularly when data has many similarities)
- Doesn’t scale to effectively infinite data (e.g. with augmentation)

Reminder: Stochastic Gradient Descent

- Define loss function ℓ, dataset D and model g with learnable parameters θ.
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate η

Stochastic Gradient Descent updates the parameters θ by moving them in the direction of the negative gradient with respect to the loss of a single item ℓ by the learning rate η multiplied by the gradient:

For each Epoch:

 For each $(x, y) \in D$:

 $$\theta \leftarrow \theta - \eta \nabla_{\theta} \ell$$
Stochastic Gradient Descent

- Stochastic Gradient Descent has poor statistical properties (very high variance)
- But is computationally inefficient (poor utilisation of resources - particularly with respect to vectorisation)

Mini-batch Stochastic Gradient Descent

- Define a batch size b
- Define batch loss as $\mathcal{L}_b = -\sum_{(x,y) \in D_b} \ell(g(x, \theta), y)$ for some loss function ℓ and model g with learnable parameters θ. D_b is a subset of dataset D of cardinality b.
- Define how many passes over the data to make (each one known as an Epoch)
- Define a learning rate η

Mini-batch Gradient Descent updates the parameters θ by moving them in the direction of the negative gradient with respect to the loss of a mini-batch D_b, \mathcal{L}_b by the learning rate η multiplied by the gradient:

\[
\text{partition the dataset } D \text{ into an array of subsets of size } b \\
\text{for each Epoch:}
\]
\[
\text{for each } D_b \in \text{partitioned}(D): \\
\quad \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_b
\]
Mini-batch Stochastic Gradient Descent has reasonable statistical properties (much lower variance than SGD)

- Allows for computationally efficiency (good utilisation of resources)
- Ultimately we would normally want to make our batches as big as possible for lower variance gradient estimates, but:
 - Must still fit in RAM (e.g. on the GPU)
 - Must be able to maintain throughput (e.g. pre-processing on the CPU; data transfer time)

So, what about the learning rate?

- Choice of learning rate is extremely important
- But we have to reason about the ‘loss landscape’
 - Most convergence analysis of optimisation algorithms assumes a convex loss landscape
 - Easy to reason about
 - Can be shown that (S)GD will converge to the optimal solution for a variety of learning rates
 - Can give insights into potential problems in the non-convex case
 - Deep Learning is highly non-convex
 - Many local minima
 - Plateaus
 - Saddle points
 - Symmetries (permutation, etc)
 - Certainly no single global minima
Accelerated gradient methods use a *leaky* average of the gradient, rather than the instantaneous gradient estimate at each time step.

A physical analogy would be one of the momentum a ball picks up rolling down a hill...

As you’ll see, this helps address the *GD failure modes, but also helps avoid getting stuck in local minima.
It's common for the ‘leaky’ average (the ‘velocity’, v_t) to be a weighted average of the instantaneous gradient g_t and the past velocity1:

$$v_t = \beta v_{t-1} + g_t$$

where $\beta \in [0, 1]$ is the ‘momentum’.

1There are quite a few variants of this; here we’re following the PyTorch variant

- The momentum method allows to accumulate velocity in directions of low curvature that persist across multiple iterations
- This leads to accelerated progress in low curvature directions compared to gradient descent
Learning with momentum on iteration t (batch at t denoted by $b(t)$) is given by:

\[v_t \leftarrow \beta v_{t-1} + \nabla \theta L_b(t) \]
\[\theta_t \leftarrow \theta_{t-1} - \eta v_t \]

Note $\beta = 0.9$ is a good choice for the momentum parameter.
In practice you want to decay your learning rate over time

- Smaller steps will help you get closer to the minima
- But don’t do it too early, else you might get stuck
- Something of an art form!
 - ‘Grad Student Descent’ or GDGS (‘Gradient Descent by Grad Student’)

Common Heuristic approach:

- if the loss hasn’t improved (within some tolerance) for k epochs
- then drop the lr by a factor of 10

- Remarkably powerful!
Cyclic learning rates

- Worried about getting stuck in a non-optimal local minima?
- Cycle the learning rate up and down (possibly annealed), with a different lr on each batch
- See https://arxiv.org/abs/1506.01186

More advanced optimisers

- **Adagrad**
 - Decrease learning rate dynamically per weight.
 - Squared magnitude of the gradient (2nd moment) used to adjust how quickly progress is made - weights with large gradients are compensated with a smaller learning rate.
 - Particularly effective for sparse features.

- **RMSProp**
 - Modifies Adagrad to decouple learning rate from gradient magnitude scaling
 - Incorporates leaky averaging of squared gradient magnitudes
 - LR would typically follow a predefined schedule

- **Adam**
 - Essentially takes all the best ideas from RMSProp and SDG+Momentum
 - Bias corrected momentum and second moment estimation
 - Shown that it might still diverge (or be non optimal, even in convex settings)...
 - LR is still a hyperparameter (you might still schedule)
The loss landscape of a deep network is complex to understand (and is far from convex)
If you’re in a hurry to get results use Adam
If you have time (or a Grad Student at hand), then use SGD (with momentum) and work on tuning the learning rate
If you’re implementing something from a paper, then follow what they did!