Differentiate
Almost
Everywhere

Vision
VLC= Learning avdLdc
Control

Differentiable Relaxations and Reparameterisations

Jonathon Hare

Vision, Learning and Control
University of Southampton

What are differentiable relaxations and

reparameterisations?

@ We've seen that we can build arbitrary computational graphs from a
variety of building blocks
@ But, those blocks need to be differentiable to work in our
optimisation framework
e More specifically they need to be continuous and differentiable almost
everywhere.
@ That limits what we can do... Can we work around that?

o Relaxations — make continuous (and potentially differentiable
everywhere) approximations.

e Reparameterisations — rewrite functions to factor out stochastic
variables from the parameters.

Jonathon Hare Relaxation 3/24

Aside: continuity and differentiable almost everywhere

o Consider the ReLU function f(x) = max(0, x)
e RelU is continuous
@ it does not have any abrupt changes in value
e small changes in x result in small changes to f(x) everywhere in the
domain of x
e RelU is differentiable almost everywhere
@ No gradient at x = 0; only left and right gradients at that point
@ There are subgradients at x = 0; implementations usually just
arbitrarily pick f'(0) =0
@ Functions that are differentiable almost everywhere or have
subgradients tend to be compatible with gradient descent methods

e We expect that the loss landscape is different for each batch & that
we'll never actually reach a minima, and we only need to mostly take
steps in the right direction.

Jonathon Hare Relaxation 4/24

Relaxing RelL.U

@ Softplus (softplus(x) = In(1+ €¥)) is a
relaxation of ReLU that is differentiable
everywhere.

— RelU
5| — Softplus ||

@ lts derivative is the Sigmoid function

@ Not widely used; counter-intuitively, 0
even though it neither saturates
completely and is differentiable | | |
everywhere, empirically it has been —b 0 5
shown that RelLU works better.

Jonathon Hare Relaxation 5/24

Interpretations of softmax

@ Up until now we've really considered softmax as a generalisation of
sigmoid (which represents a probability distribution over a binary
variable) to many output categories.

e softmax transforms a vector of logits into a probability distribution over
categories.

@ As you might guess from the name, softmax is a relaxation...

e but not of the max function like the name would suggest!
e softmax can be viewed as a continuous and differentiable relaxation of
the arg max function with one-hot output encoding.
e The arg max function is not continuous or differentiable; softmax
provides an approximation:
X — [1.1 4.0 -0.1 2.3 |

argmax(x)= [O 1 0 0]
softmax(x) = [0.044 0.797 0.013 0.146 |

Jonathon Hare Relaxation 6/24

The Softmax function with temperature

Consider what happens if you were to divide the input logits to a softmax
by a scalar temperature parameter T.

eXi/T

softmax(x/T)i = <7 Vi=1,2,...,K
> 1€’
| |
1l 00T =200
00 T=5.0
0.8} — 0 T=1.0 |
I T=05
0.6 i
0.4 .

i BN I Mk

Jonathon Hare Relaxation 7/24

arg max — softmax with temperature

[
[
[
|
|
[

1.1 4.0 -0.1 2.3
0.044 0.797 0.013 0.146

x = |
|
0.023 0.868 0.005 0.104]
|
|
|

softmax(x/1.0) =
softmax(x/0.8) =
softmax(x/0.6) =
softmax(x/0.4) =
softmax(x/0.2) =

0.008 0.937 0.001 0.055
6.997e-04 9.852e-01 3.484e-05 1.405e-02
5.042e-07 9.998e-01 1.250e-09 2.034e-04

Jonathon Hare Relaxation 8/24

arg max — scalar approximation

@ What if you want to get a scalar approximation to the index of the
arg max rather than a probability distribution approximating the

one-hot form?

e Caveat: we are not actually going get a guaranteed integer
representation as that would be non-differentiable; we'll have to live

with a float that is an approximation®.

@ First, consider how to convert a one-hot vector to index
representation in a differentiable manner: [0,0,1,0] — 2

e Just dot product with a vector of indices: [0, 1,2, 3]

@ The same process can be applied to the softmax distribution
o As temperature T — 0, softmax(x/T)-[0,1,..

x € RN,

Ltor now — we'll address this in a few slides time!

Jonathon Hare

Relaxation

., N] — arg max(x) for

924

arg max — scalar approximation

x=[11 40 —01 23]"
i=[00 1.0 20 3.0]"

_|

softmax(x/1.0) ' i = 1.2606

softmax(x/0.8) " i = 1.1894

softmax(x/0.6) i = 1.1037
()'i=1.0274
()

Ti=1.0004

softmax(x/0.4
softmax(x/0.2

Jonathon Hare Relaxation

10/24

MaX

@ A similar trick applies to finding the maximum value of a vector:

o Use softmax(x) as an approximate one-hot arg max, and dot product
with the vector x.
o As temperature T — 0, softmax(x/T) T x — max(x).

x=[11 40 —01 23]"
softmax(x/1.0) " x = 3.571
softmax(x/0.8) " x = 3.736
softmax(x/0.6) ' x = 3.881

(x/0.4)
(x/0.2)

_|

x =3.974
softmax(x/0.2) " x = 3.999

softmax(x/0.4

Jonathon Hare Relaxation 11 /24

@ L1 norm is the sum of absolute values

of a vector
— abs(x)

@ We've seen that an L1 norm regulariser g | ——abs/(x) |

can induce sparsity in a model
@ abs is continuous and differentiable /

almost everywhere, but... 0t .
@ unlike ReLU, the gradients left and

right of the discontinuity point in equal | | |

and opposite directions -5 0 5

e This can cause oscillations that
prevent or hamper learning

Jonathon Hare Relaxation 12 /24

Relaxing the L1 norm

@ Huber loss (aka Smooth L1 loss) relaxes

L1 by mixing it with L2 near the origin: — huber(x)

S |—huber'(x) |

0.5(xi —yi)?, if |xi—yil <1
zi =
I |xi — yi| — 0.5, otherwise

@ In both cases gradients reduce in
magnitude and switch direction | | |
smoothly which can lead to much less —> 0 >
oscillation.

Jonathon Hare Relaxation 13 /24

Backpropagation through random operations

@ Up until now all the models we've considered have performed
deterministic transformations of input variables x.

@ What if we want to build a model that performs a stochastic
transformation of x?
@ A simple way to do this is to augment the input x with a random
vector z sampled from some distribution
o The network would learn a function f(x, z) that is internally
deterministic, but appears stochastic to an observer that does not have
access to z.

e provided that f is continuous and differentiable (almost everywhere) we
can perform gradient based optimisation as usual.

Jonathon Hare Relaxation 14 /24

Differentiable Sampling

Consider

y ~N(u,0?)

How can we take derivatives of y with respect to i and 02?

Jonathon Hare Relaxation 15 /24

Differentiable Sampling

If we rewrite
y = p+ oz where z = N(0,1)
Then it is clear that y is a function of a deterministic operation with
variables ;1 and o with an (extra) input z.
@ Crucially the extra input is an r.v. whose distribution is not a function
of any variables whose derivatives we wish to calculate.

@ The derivatives dy/du and dy/do tell us how an infinitesimal change
in 11 or o would change y if we could repeat the sampling operation
with the same value of z

Jonathon Hare Relaxation 16 / 24

The reparameterisation trick

@ The ‘trick’ of factoring out the source of randomness into an extra
input z is often called the reparameterisation trick.

@ It doesn't just apply to the Gaussian distribution!

o More generally we can express any probability distribution p(y; @) or
p(y|x;0) as p(y;w) where w contains the parameters 8 and if
applicable inputs x.

o A sample y ~ p(y;w) can be rewritten as y = f(z,w) where z is a
source of randomness.

e We can thus compute derivatives Jy /0w and use gradient based
optimisation as long as

e f is continuous and differentiable almost everywhere
@ w is not a function of z
@ and z is not a function of w

Jonathon Hare Relaxation 17 /24

Backpropagation through discrete stochastic operations

e Consider a stochastic model y = f(z,w) where the outputs are
discrete.

This implies f must be a step function.

Derivatives of a step function at the step are undefined.

Derivatives are zero almost everywhere.

If we have a loss L(y) the gradients don't give us any information on
how to update the parameters 8 to minimise the loss

@ Potential solutions:

e Policy Gradient Methods (e.g. the REINFORCE algorithm)
e A relaxation and another ‘trick’: Gumbel Softmax and the
Straight-through operator

Jonathon Hare Relaxation 18 /24

REINFORCE: REward Increment = nonnegative Factor X

Offset Reinforcement x Characteristic Eligibility

e L(f(z,w)) has useless derivatives

o But the expected loss [, ;) £(f(z,w))is often smooth and
continuous.

e This is not tractable with high dimensional y
e But, it can be estimated without bias using an Monte Carlo average.

@ REINFORCE is a family of algorithms that utilise this idea.

Jonathon Hare Relaxation

REINFORCE: REward Increment = nonnegative Factor x
Offset Reinforcement x Characteristic Eligibility

The simplest form of REINFORCE is easy to derive by differentiating the
expected loss:

E.[L(y)] = Z L(y)p(y) (1)
_ Z £l 8|og p(y) (3)
m Iloe oy

@ This gives us an unbiased MC estimator of the gradient.
@ Unfortunately this is a very high variance estimator, so it would
require many samples of y to be drawn to obtain a good estimate
e or equivalently, if only one sample were drawn, SGD would converge
very slowly and require a small learning rate.

Jonathon Hare Relaxation 20/24

Sampling from a categorical distribution: Gumbel Softmax

The generation of a discrete token, t, from a vocabulary of K tokens is
achieved by sampling a categorical distribution

tNCat(pl,...,pK);Zp,-zl.

Generating the probabilities p1, ..., pk directly from a neural network has
potential numerical problems; it's much easier to generate logits,

X1,...,XK-
The gumbel-softmax reparameterisation allows us to sample directly using

the logits:

t = argmax Xx; + z;
,'e{]_,... ’K}

where z, ... zx are i.i.d Gumbel(0,1) variates which can be computed
from Uniform variates through — log(— log(2/(0, 1))).

Jonathon Hare Relaxation

Differentiable Sampling: Straight-Through Gumbel
Softmax

Ok, but how does that help? argmax isn't differentiable!
...but we've already seen that we can relax arg max using
e.)/i/T

Softargmax(y) = Z WI
J

i

where T is the temperature parameter.

Jonathon Hare Relaxation 22 /24

Differentiable Sampling: Straight-Through Gumbel

Softmax

But... this clearly gives us a result that will be non-integer; we cannot
round or clip because it would be non-differentiable.

The Straight-Through operator allows us to take the result of a true
argmax that has the gradient of the softargmax:

STargmax(y) = softargmax(y) + stopgradient(argmax(y) — softargmax(y))

where stopgradient is defined such that stopgradient(a) = a and
V stopgradient(a) = 0.

Straight-Through Gumbel Softmax

Combine the gumbel softmax trick with the STargmax to give you discrete
samples, with a usable gradient?.

?The ST operator is biased but low variance; in practice it works very well and is
better than the high-variance unbiased estimates you could get through
REINFORCE.

Jonathon Hare Relaxation 23 /24

@ Differentiable programming works with functions that are continuous
and differentiable almost everywhere.

@ Some non-continuous functions can be relaxed to make them more
amenable to gradient based optimisation by making continuous
approximations.

@ Some continuous functions with discontinuous gradients can be
relaxed to make optimisation more stable.

@ Reparameterisations can allow us to differentiate through random
operations such as sampling

@ We can even make networks output/utilise discrete variables by
combining relaxations and reparameterisations.

Jonathon Hare Relaxation 24 /24

