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A lot of the ideas in this lecture come from Andrej Karpathy's blog post on the Unreasonable Effectiveness of RNNs
(http://karpathy.github.i0/2015/05/21/rnn-effectiveness/). Many of the images and animations were made by Adam
Priigel-Bennett.
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Recurrent Neural Networks - Motivation

x: Jon and Ethan gave deep learning lectures
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Recurrent Neural Networks - Motivation

x: xM x( o x(T)

Jon ... Ethan ... lectures
y: y(l) y(t) y(T)/)
y: 1 1 0

In this example, T, = T, =7 but T, and T, can be different.
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Recurrent Neural Networks

one to one one to many many to one many to many many to many
1 tt ottt ottt
1 N (NN AR RN

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Aside: One Hot Encoding

How can we represent individual words (or other discrete tokens)?

“a” “abbreviations” “zoology” “zoom”
1 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

Image from https://ayearofai.com
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Why Not a Standard Feed Forward Network?

@ For a task such as “Named Entity Recognition” a MLP would have
several disadvantages

e The inputs and outputs may have varying lengths
e The features wouldn’t be shared across different temporal positions in
the network

e Note that 1-D convolutions can be (and are) used to address this, in
addition to RNNs - more on this in a later lecture

@ To interpret a sentence, or to predict tomorrows weather it is
necessary to remember what happened in the past

@ To facilitate this we would like to add a feedback loop delayed in time
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Recurrent Neural Networks
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@ RNNs are a family of ANNs for processing sequential data

@ RNNs have directed cycles in their computational graphs

'Image taken from https://towardsdatascience.com
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Recurrent Neural Networks

RNNs combine two properties which make them very powerful.

© Distributed hidden state that allows them to store a lot of information
about the past efficiently. This is because several different units can
be active at once, allowing them to remember several things at once.

© Non-linear dynamics that allows them to update their hidden state in
complicated ways?.

2Often said to be difficult to train, but this is not necessarily true - dropout can help with

overfitting for example
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Recurrent Neural Networks
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RNNs are Turing complete in the sense they can simulate arbitrary

programs>.

If training vanilla neural nets is optimisation over functions, training
recurrent nets is optimisation over programs.

3Don’t read too much into this - like universal approximation theory, just because they

can doesn't mean its necessarily learnable!
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Recurrent Network
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RNNs
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Training Recurrent Networks

L T)

((x(t),y(t))‘t =1,2,..

@ Given a set of inputs D

c(3)

c(2)

T

@ Minimise an error (here MSE, but your choice):

T
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RNNs
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An RNN is just a recursive function invocation

o y(t) = f(x(t), c(t —1)|W)
@ and the state c(t) = g(x(t), c(t — 1)|W)

@ If the output y(t) depends on the input x(t — 2), then prediction will
be

F(x(t), g(x(t —1),g(x(t - 2), g(x(t = 3)|W)|W)[W)|W)

@ it should be clear that the gradients of this with respect to the
weights can be found with the chain rule
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What is the state update g()?

@ It depends on the variant of the RNN!

e Elman
e Jordan
o LSTM
o GRU
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Elman Networks (“Vanilla RNNs")

h;y = op(Winx: + bip + Whphe_1 + bpp)
y: =o,(W,h; + b)

@ oy is usually tanh

@ o, is usually identity (linear) — the y's could be regressed values or
logits

@ the state h; is referred to as the “hidden state”

@ the output at time t is a projection of the hidden state at that time

@ the hidden state at time t is a summation of a projection of the input
and a projection of the previous hidden state
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Going deep: Stacking RNNs

@ RNNs can be trivially stacked into deeper networks

@ It's just function composition:
y(t) = hL(f(x(1), 2(t — 1)[W1), ex(t — 1)|W2)

@ The output of the inner RNN at time t is fed into the input of the
outer RNN which produces the prediction y

@ Also note: RNNs are most often not used in isolation - it's quite
common to process the inputs and outputs with MLPs (or even
convolutions)
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Example: Character-level language modelling

@ We'll end with an example: an RNN that learns to ‘generate’ English
text by learning to predict the next character in a sequence

@ This is “Character-level Language Modelling”
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Example: Character-level language modelling
target chars: “¢” ¥ ]2 “0"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 15
tput |

otfputlayer s 1.0 1.9 0.1
4.1 12 -1.1 22

R R R
0.3 1.0 0.1 |w hhl -0-3
hidden layer | -0.1 ~ 03 = -05 > 0.9
0.9 0.1 0.3 0.7

P Jwe
1 0 0 0
- 0 1 0 0
input layer 0 0 - -
0 0 0 0
input chars: “h” “g” ‘g @

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Training a Char-RNN

@ The training data is just text data (e.g. sequences of characters)

@ The task is unsupervised (or rather self-supervised): given the
previous characters predict the next one

e All you need to do is train on a reasonable sized corpus of text
e Overfitting could be a problem: dropout is very useful here
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Sampling the Language Model

@ Once the model is trained what can you do with it?

@ if you feed it an initial character it will output the logits of the next
character

@ you can use the logits to select the next character and feed that in as
the input character for the next timestep

@ how do you ‘sample’ a character from the logits?

e you could pick the most likely (maximum-likelihood solution), but this
might lead to generated text with very low variance (it might be boring
and repetitive)

e you could treat the softmax probabilities defined by the logits as a
categorical distribution and sample from them

@ you might increase the ‘temperature’, T, of the softmax to make the

distribution more diverse (less ‘peaky’): q; = %
] J
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- Sampled from a single layer RNN*.

*LSTM, 128 dim hidden size, with linear input projection to 8-dimensions and output to

the number of characters (84). Trained on the text of these slides for 50 epochs.
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