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A lot of the ideas in this lecture come from Andrej Karpathy’s blog post on the Unreasonable Effectiveness of RNNs
(http://karpathy.github.io/2015/05/21/rnn-effectiveness/). Many of the images and animations were made by Adam
Prügel-Bennett.
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Recurrent Neural Networks - Motivation

x : Jon and Ethan gave deep learning lectures

y : 1 0 1 0 0 0 0
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Recurrent Neural Networks - Motivation

x : x (1) ... x (t) ... x (Tx )

x : Jon ... Ethan ... lectures

y : y (1) ... y (t) ... y (Ty )

y : 1 ... 1 ... 0

In this example, Tx = Ty = 7 but Tx and Ty can be different.
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Recurrent Neural Networks

�

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Aside: One Hot Encoding

How can we represent individual words (or other discrete tokens)?

Image from https://ayearofai.com
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://ayearofai.com


Why Not a Standard Feed Forward Network?

For a task such as “Named Entity Recognition” a MLP would have
several disadvantages

The inputs and outputs may have varying lengths
The features wouldn’t be shared across different temporal positions in
the network

Note that 1-D convolutions can be (and are) used to address this, in
addition to RNNs - more on this in a later lecture

To interpret a sentence, or to predict tomorrows weather it is
necessary to remember what happened in the past

To facilitate this we would like to add a feedback loop delayed in time
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Recurrent Neural Networks

1

RNNs are a family of ANNs for processing sequential data

RNNs have directed cycles in their computational graphs
1Image taken from https://towardsdatascience.com
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https://towardsdatascience.com


Recurrent Neural Networks

RNNs combine two properties which make them very powerful.

1 Distributed hidden state that allows them to store a lot of information
about the past efficiently. This is because several different units can
be active at once, allowing them to remember several things at once.

2 Non-linear dynamics that allows them to update their hidden state in
complicated ways2.

2Often said to be difficult to train, but this is not necessarily true - dropout can help with
overfitting for example
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Recurrent Neural Networks

RNNs are Turing complete in the sense they can simulate arbitrary
programs3.

If training vanilla neural nets is optimisation over functions, training
recurrent nets is optimisation over programs.

3Don’t read too much into this - like universal approximation theory, just because they
can doesn’t mean its necessarily learnable!
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Recurrent Network
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Training Recurrent Networks

Given a set of inputs D =
(
(x(t), y(t))

∣∣t = 1, 2, . . . , T
)
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Minimise an error (here MSE, but your choice):

E (W ) =
T∑
t=1

‖y(t)− f (x(t), c(t − 1)|W )‖2

This is known as back-propagation through time
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An RNN is just a recursive function invocation

y(t) = f (x(t), c(t − 1)|W )

and the state c(t) = g(x(t), c(t − 1)|W )

If the output y(t) depends on the input x(t − 2), then prediction will
be

f (x(t), g(x(t − 1), g(x(t − 2), g(x(t − 3)|W )|W )|W )|W )

it should be clear that the gradients of this with respect to the
weights can be found with the chain rule
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What is the state update g()?

It depends on the variant of the RNN!

Elman
Jordan
LSTM
GRU
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Elman Networks (“Vanilla RNNs”)

ht = σh(Wihxt + bih + Whhht−1 + bhh)

yt = σy (Wyht + by )

σh is usually tanh

σy is usually identity (linear) – the y ’s could be regressed values or
logits

the state ht is referred to as the “hidden state”

the output at time t is a projection of the hidden state at that time

the hidden state at time t is a summation of a projection of the input
and a projection of the previous hidden state
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Going deep: Stacking RNNs

RNNs can be trivially stacked into deeper networks

It’s just function composition:

y(t) = f2(f1(x(t), c2(t − 1)|W1), c2(t − 1)|W2)

The output of the inner RNN at time t is fed into the input of the
outer RNN which produces the prediction y

Also note: RNNs are most often not used in isolation - it’s quite
common to process the inputs and outputs with MLPs (or even
convolutions)
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Example: Character-level language modelling

We’ll end with an example: an RNN that learns to ‘generate’ English
text by learning to predict the next character in a sequence

This is “Character-level Language Modelling”
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Example: Character-level language modelling

Image from http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Training a Char-RNN

The training data is just text data (e.g. sequences of characters)

The task is unsupervised (or rather self-supervised): given the
previous characters predict the next one

All you need to do is train on a reasonable sized corpus of text
Overfitting could be a problem: dropout is very useful here

Jonathon Hare RNNs 19 / 21

Sampling the Language Model

Once the model is trained what can you do with it?

if you feed it an initial character it will output the logits of the next
character

you can use the logits to select the next character and feed that in as
the input character for the next timestep

how do you ‘sample’ a character from the logits?

you could pick the most likely (maximum-likelihood solution), but this
might lead to generated text with very low variance (it might be boring
and repetitive)
you could treat the softmax probabilities defined by the logits as a
categorical distribution and sample from them

you might increase the ‘temperature’, T , of the softmax to make the
distribution more diverse (less ‘peaky’): qi = exp (zi/T )∑

j exp (zj/T )
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- Sampled from a single layer RNN4.

4LSTM, 128 dim hidden size, with linear input projection to 8-dimensions and output to
the number of characters (84). Trained on the text of these slides for 50 epochs.
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