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Variational Autoencoder (VAE)

v

VAEs architecturally similar to autoencoders (AEs).

VAEs (vs AEs) significantly different in their goal and
mathematical formulation.

AEs map the input into a fixed vector.
However, VAEs map the input into a distribution.

VAEs are a combination of neural networks (AEs) and
graphical models.
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Graphical Models (Background)

» A graphical model is a probabilistic model for which a graph
expresses the conditional dependence structure between
random variables.

» Graphical models are commonly used in probability theory,
statistics —particularly Bayesian statistics— and machine
learning. !

1Definition taken from Wikipedia
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KL Divergence (Background)

» Kullback—Leibler divergence, Dk (P || Q): a measure of how
one probability distribution @ is different from a second,
reference probability distribution P. 2

» A simple interpretation of the divergence of P from Q is the
expected excess surprise from using Q as a model when the
actual distribution is P.

» While it is a distance, it is not a metric, the most familiar type
of distance: it is asymmetric in the two distributions.

2Definition taken from Wikipedia
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Variational Autoencoders (VAEs)

Variational Autoencoder

¢-- 0
4o(2/x) po(x|z)
Encoder Decoder
Network Network

Minimize: Dxr[qs(2z|x)||po(z|x)]

X|Z)] VA
Intractable: po(z|x) = M
po (X)

3

3 Auto-Encoding Variational Bayes https://arxiv.org/abs/1312.6114
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https://arxiv.org/abs/1312.6114

Variational Autoencoders (VAEs)

The distance loss just defined is expanded as
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po(z)
= log(ps (x)) + Dxr(ge(z | X) || Po(2)) — Eyngy (aix) (log(ps (x | 2)))

At this point, it is possible to rewrite the equation as

dz
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Evidence Lower Bound (ELBO) Loss

Lvae(0, ) = —E,wq,(z|x)log(Po(x|2)) + Dri(qs(2]x)l|pa(2))

» We are trying to minimize the ELBO loss with respect to the
model parameters.
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Why Autoencoder?

» The reconstruction term, forces each image to be unique and
spread out.

> The KL term will push all the images towards the same prior.

Only reconstruction loss Only KL divergence Combination

*Figure taken from https://towardsdatascience.com/intuitively-

understanding-variational-autoencoders-1bfe67eb5daf
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Training Procedure
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®Figure taken from Carl Doersch tutorial
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Reparametrization Trick Visualisation

Original form Reparameterised form
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VAE Models and Performance

» VAEs can be used with any kind of data

» the distributions and network architecture just needs to be set
accordingly
P e.g. it's common to use convolutions in the encoder and
transpose convolutions in (Gaussian) decoder for image data
» VAEs have nice learning dynamics; they tend to be easy to
optimise with stable convergence
» VAEs have a reputation for producing blurry reconstructions
of images
» Not fully understood why, but most likely related to a side
effect of maximum-likelihood training

» VAEs tend to only utilise a small subset of the dimensions of z
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Reconstructions Example
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